IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i17p4365-d1468782.html
   My bibliography  Save this article

Research on Phase Change Cold Storage Materials and Innovative Applications in Air Conditioning Systems

Author

Listed:
  • Zhengjing Li

    (Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China)

  • Yishun Sha

    (Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China)

  • Xuelai Zhang

    (Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China)

Abstract

Phase change cold storage materials are functional materials that rely on the latent heat of phase change to absorb and store cold energy. They have significant advantages in slight temperature differences, cold storage, and heat exchange. Based on the research status of phase change cold storage materials and their application in air conditioning systems in recent years, this paper provides an overview of the materials and their enhanced research progress. It summarizes the types of phase change cold storage air conditioning systems, optimization schemes, and system applications. This paper also identifies the current issues in phase change cold storage air conditioning and discusses the development trends in cold storage materials and air conditioning systems. It anticipates that future advancements will focus on composite phase change cold storage materials and low-energy consumption intelligent phase change cold storage air conditioning systems in steam compression using spherical capsules and concave–convex plate PCM.

Suggested Citation

  • Zhengjing Li & Yishun Sha & Xuelai Zhang, 2024. "Research on Phase Change Cold Storage Materials and Innovative Applications in Air Conditioning Systems," Energies, MDPI, vol. 17(17), pages 1-24, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4365-:d:1468782
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/17/4365/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/17/4365/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Agustín Torres Rodríguez & David Morillón Gálvez & Iván García Kerdan & Rodolfo Silva Casarín, 2023. "A Comparison of a Transparent Thermal Insulation System Filled with Refrigerants and a Pig-Fat Based PCM," Energies, MDPI, vol. 16(9), pages 1-28, April.
    2. Goyal, Anurag & Kozubal, Eric & Woods, Jason & Nofal, Malek & Al-Hallaj, Said, 2021. "Design and performance evaluation of a dual-circuit thermal energy storage module for air conditioners," Applied Energy, Elsevier, vol. 292(C).
    3. Zhao, Dongliang & Tan, Gang, 2015. "Numerical analysis of a shell-and-tube latent heat storage unit with fins for air-conditioning application," Applied Energy, Elsevier, vol. 138(C), pages 381-392.
    4. Jia, Jie & Lee, W.L., 2015. "Experimental investigations on using phase change material for performance improvement of storage-enhanced heat recovery room air-conditioner," Energy, Elsevier, vol. 93(P2), pages 1394-1403.
    5. Li, Sihui & Peng, Jinqing & Zou, Bin & Li, Bojia & Lu, Chujie & Cao, Jingyu & Luo, Yimo & Ma, Tao, 2021. "Zero energy potential of photovoltaic direct-driven air conditioners with considering the load flexibility of air conditioners," Applied Energy, Elsevier, vol. 304(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nie, Binjian & Zou, Boyang & She, Xiaohui & Zhang, Tongtong & Li, Yongliang & Ding, Yulong, 2020. "Development of a heat transfer coefficient based design method of a thermal energy storage device for transport air-conditioning applications," Energy, Elsevier, vol. 196(C).
    2. Nie, Binjian & Palacios, Anabel & Zou, Boyang & Liu, Jiaxu & Zhang, Tongtong & Li, Yunren, 2020. "Review on phase change materials for cold thermal energy storage applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Yuan, Yanping & Gao, Xiangkui & Wu, Hongwei & Zhang, Zujin & Cao, Xiaoling & Sun, Liangliang & Yu, Nanyang, 2017. "Coupled cooling method and application of latent heat thermal energy storage combined with pre-cooling of envelope: Method and model development," Energy, Elsevier, vol. 119(C), pages 817-833.
    4. Huang, Ransisi & Mahvi, Allison & James, Nelson & Kozubal, Eric & Woods, Jason, 2024. "Evaluation of phase change thermal storage in a cascade heat pump," Applied Energy, Elsevier, vol. 359(C).
    5. Li, Peisheng & Li, Zhihao & Zhang, Ying & Li, Wenbin & Chen, Yue & Lei, Jie, 2020. "Numerical research on performance comparison of multi-layer high temperature latent heat storage under different structure parameter," Renewable Energy, Elsevier, vol. 156(C), pages 131-141.
    6. Javed, Muhammad Shahzad & Jurasz, Jakub & McPherson, Madeleine & Dai, Yanjun & Ma, Tao, 2022. "Quantitative evaluation of renewable-energy-based remote microgrids: curtailment, load shifting, and reliability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    7. Xiong, Chengyan & Meng, Qinglong & Wei, Ying'an & Luo, Huilong & Lei, Yu & Liu, Jiao & Yan, Xiuying, 2023. "A demand response method for an active thermal energy storage air-conditioning system using improved transactive control: On-site experiments," Applied Energy, Elsevier, vol. 339(C).
    8. Ait Laasri, Imad & Es-sakali, Niima & Charai, Mouatassim & Mghazli, Mohamed Oualid & Outzourhit, Abdelkader, 2024. "Recent progress, limitations, and future directions of macro-encapsulated phase change materials for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    9. Pointner, Harald & Steinmann, Wolf-Dieter, 2016. "Experimental demonstration of an active latent heat storage concept," Applied Energy, Elsevier, vol. 168(C), pages 661-671.
    10. Yang, Jialin & Yang, Lijun & Xu, Chao & Du, Xiaoze, 2016. "Experimental study on enhancement of thermal energy storage with phase-change material," Applied Energy, Elsevier, vol. 169(C), pages 164-176.
    11. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Diarce, Gonzalo & Taylor, Robert A., 2019. "An improved, generalized effective thermal conductivity method for rapid design of high temperature shell-and-tube latent heat thermal energy storage systems," Renewable Energy, Elsevier, vol. 132(C), pages 694-708.
    12. Cao, Xiaoling & Zhang, Nan & Yuan, Yanping & Luo, Xiaolong, 2020. "Thermal performance of triplex-tube latent heat storage exchanger: simultaneous heat storage and hot water supply via condensation heat recovery," Renewable Energy, Elsevier, vol. 157(C), pages 616-625.
    13. Pointner, Harald & de Gracia, Alvaro & Vogel, Julian & Tay, N.H.S. & Liu, Ming & Johnson, Maike & Cabeza, Luisa F., 2016. "Computational efficiency in numerical modeling of high temperature latent heat storage: Comparison of selected software tools based on experimental data," Applied Energy, Elsevier, vol. 161(C), pages 337-348.
    14. Huang, Yanjun & Khajepour, Amir & Bagheri, Farshid & Bahrami, Majid, 2016. "Optimal energy-efficient predictive controllers in automotive air-conditioning/refrigeration systems," Applied Energy, Elsevier, vol. 184(C), pages 605-618.
    15. Said, M.A. & Hassan, Hamdy, 2018. "Parametric study on the effect of using cold thermal storage energy of phase change material on the performance of air-conditioning unit," Applied Energy, Elsevier, vol. 230(C), pages 1380-1402.
    16. Jin, Xing & Hu, Huoyan & Shi, Xing & Zhou, Xin & Yang, Liu & Yin, Yonggao & Zhang, Xiaosong, 2018. "A new heat transfer model of phase change material based on energy asymmetry," Applied Energy, Elsevier, vol. 212(C), pages 1409-1416.
    17. Li, Sihui & Peng, Jinqing & Li, Houpei & Zou, Bin & Song, Jiaming & Ma, Tao & Ji, Jie, 2022. "Zero energy potential of PV direct-driven air conditioners coupled with phase change materials and load flexibility," Renewable Energy, Elsevier, vol. 200(C), pages 419-432.
    18. Yu, Zhenyu & Lu, Fei & Zou, Yu & Yang, Xudong, 2022. "Quantifying the real-time energy flexibility of commuter plug-in electric vehicles in an office building considering photovoltaic and load uncertainty," Applied Energy, Elsevier, vol. 321(C).
    19. Li, Sihui & Peng, Jinqing & Wang, Meng & Wang, Kai & Li, Houpei & Lu, Chujie, 2024. "Approaching nearly zero energy of PV direct air conditioners by integrating building design, load flexibility and PCM," Renewable Energy, Elsevier, vol. 221(C).
    20. Lu, Shilei & Lin, Quanyi & Liu, Yi & Yue, Lu & Wang, Ran, 2022. "Study on thermal performance improvement technology of latent heat thermal energy storage for building heating," Applied Energy, Elsevier, vol. 323(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4365-:d:1468782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.