IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i15p3612-d1440887.html
   My bibliography  Save this article

Optimal Operation of Virtual Power Plants Based on Stackelberg Game Theory

Author

Listed:
  • Weishi Zhang

    (Anhui Power Exchange Center Co., Ltd., Hefei 230022, China)

  • Chuan He

    (Anhui Power Exchange Center Co., Ltd., Hefei 230022, China)

  • Haichao Wang

    (Anhui Power Exchange Center Co., Ltd., Hefei 230022, China)

  • Hanhan Qian

    (Anhui Power Exchange Center Co., Ltd., Hefei 230022, China)

  • Zhemin Lin

    (Anhui Power Exchange Center Co., Ltd., Hefei 230022, China)

  • Hui Qi

    (Anhui Power Exchange Center Co., Ltd., Hefei 230022, China)

Abstract

As the scale of units within virtual power plants (VPPs) continues to expand, establishing an effective operational game model for these internal units has become a pressing issue for enhancing management and operations. This paper integrates photovoltaic generation, wind power, energy storage, and constant-temperature responsive loads, and it also considers micro gas turbines as auxiliary units, collectively forming a typical VPP case study. An operational optimization model was developed for the VPP control center and the micro gas turbines, and the game relationship between them was analyzed. A Stackelberg game model between the VPP control center and the micro gas turbines was proposed. Lastly, an improved D3QN (Dueling Double Deep Q-network) algorithm was employed to compute the VPP’s optimal operational strategy based on Stackelberg game theory. The results demonstrate that the proposed model can balance the energy complementarity between the VPP control center and the micro gas turbines, thereby enhancing the overall economic efficiency of operations.

Suggested Citation

  • Weishi Zhang & Chuan He & Haichao Wang & Hanhan Qian & Zhemin Lin & Hui Qi, 2024. "Optimal Operation of Virtual Power Plants Based on Stackelberg Game Theory," Energies, MDPI, vol. 17(15), pages 1-15, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3612-:d:1440887
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/15/3612/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/15/3612/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu, Mengmeng & Hong, Seung Ho, 2017. "Incentive-based demand response considering hierarchical electricity market: A Stackelberg game approach," Applied Energy, Elsevier, vol. 203(C), pages 267-279.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Ling & Zhou, Bin & Cao, Yijia & Wing Or, Siu & Li, Yong & Wing Chan, Ka, 2022. "Hierarchical distributed multi-energy demand response for coordinated operation of building clusters," Applied Energy, Elsevier, vol. 308(C).
    2. Bhatti, Bilal Ahmad & Broadwater, Robert, 2019. "Energy trading in the distribution system using a non-model based game theoretic approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Wang, Lu & Gu, Wei & Wu, Zhi & Qiu, Haifeng & Pan, Guangsheng, 2020. "Non-cooperative game-based multilateral contract transactions in power-heating integrated systems," Applied Energy, Elsevier, vol. 268(C).
    4. Li, Bo & Li, Xu & Su, Qingyu, 2022. "A system and game strategy for the isolated island electric-gas deeply coupled energy network," Applied Energy, Elsevier, vol. 306(PA).
    5. M. Y. Jumba & Y. S. Haruna & U. O. Aliyu & A. L. Amao, 2024. "Application of Games Theory in Modelling of Nigerian Electricity Market," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(5), pages 1129-1140, May.
    6. Qin, Qiwei & Gosselin, Louis, 2024. "Community-based transactive energy market concept for 5th generation district heating and cooling through distributed optimization," Applied Energy, Elsevier, vol. 371(C).
    7. Lu, Qing & Lü, Shuaikang & Leng, Yajun, 2019. "A Nash-Stackelberg game approach in regional energy market considering users’ integrated demand response," Energy, Elsevier, vol. 175(C), pages 456-470.
    8. Park, Keonwoo & Moon, Ilkyeong, 2022. "Multi-agent deep reinforcement learning approach for EV charging scheduling in a smart grid," Applied Energy, Elsevier, vol. 328(C).
    9. Máximo A. Domínguez-Garabitos & Víctor S. Ocaña-Guevara & Félix Santos-García & Adriana Arango-Manrique & Miguel Aybar-Mejía, 2022. "A Methodological Proposal for Implementing Demand-Shifting Strategies in the Wholesale Electricity Market," Energies, MDPI, vol. 15(4), pages 1-28, February.
    10. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    11. Luo, Zhe & Hong, SeungHo & Ding, YueMin, 2019. "A data mining-driven incentive-based demand response scheme for a virtual power plant," Applied Energy, Elsevier, vol. 239(C), pages 549-559.
    12. Teng, Sin Yong & Máša, Vítězslav & Touš, Michal & Vondra, Marek & Lam, Hon Loong & Stehlík, Petr, 2022. "Waste-to-energy forecasting and real-time optimization: An anomaly-aware approach," Renewable Energy, Elsevier, vol. 181(C), pages 142-155.
    13. Ma, Siyu & Liu, Hui & Wang, Ni & Huang, Lidong & Goh, Hui Hwang, 2023. "Incentive-based demand response under incomplete information based on the deep deterministic policy gradient," Applied Energy, Elsevier, vol. 351(C).
    14. Konstantakopoulos, Ioannis C. & Barkan, Andrew R. & He, Shiying & Veeravalli, Tanya & Liu, Huihan & Spanos, Costas, 2019. "A deep learning and gamification approach to improving human-building interaction and energy efficiency in smart infrastructure," Applied Energy, Elsevier, vol. 237(C), pages 810-821.
    15. Li, Jiamei & Ai, Qian & Yin, Shuangrui & Hao, Ran, 2022. "An aggregator-oriented hierarchical market mechanism for multi-type ancillary service provision based on the two-loop Stackelberg game," Applied Energy, Elsevier, vol. 323(C).
    16. Bhatti, Bilal Ahmad & Broadwater, Robert, 2020. "Distributed Nash Equilibrium Seeking for a Dynamic Micro-grid Energy Trading Game with Non-quadratic Payoffs," Energy, Elsevier, vol. 202(C).
    17. Paraskevas Koukaras & Paschalis Gkaidatzis & Napoleon Bezas & Tommaso Bragatto & Federico Carere & Francesca Santori & Marcel Antal & Dimosthenis Ioannidis & Christos Tjortjis & Dimitrios Tzovaras, 2021. "A Tri-Layer Optimization Framework for Day-Ahead Energy Scheduling Based on Cost and Discomfort Minimization," Energies, MDPI, vol. 14(12), pages 1-24, June.
    18. Kaijun Lin & Junyong Wu & Di Liu & Dezhi Li & Taorong Gong, 2018. "Energy Management of Combined Cooling, Heating and Power Micro Energy Grid Based on Leader-Follower Game Theory," Energies, MDPI, vol. 11(3), pages 1-21, March.
    19. Malik, Anam & Haghdadi, Navid & MacGill, Iain & Ravishankar, Jayashri, 2019. "Appliance level data analysis of summer demand reduction potential from residential air conditioner control," Applied Energy, Elsevier, vol. 235(C), pages 776-785.
    20. Bao, Peng & Xu, Qingshan & Yang, Yongbiao & Nan, Yu & Wang, Yucui, 2024. "Efficient virtual power plant management strategy and Leontief-game pricing mechanism towards real-time economic dispatch support: A case study of large-scale 5G base stations," Applied Energy, Elsevier, vol. 358(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3612-:d:1440887. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.