IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i12p2827-d1411310.html
   My bibliography  Save this article

Energy Cost Optimization for Incorporating Energy Hubs into a Smart Microgrid with RESs, CHP, and EVs

Author

Listed:
  • Anestis G. Anastasiadis

    (Public Power Corporation S.A., Chalkokondili 22, 10432 Athens, Greece
    Department of Electrical and Electronics Engineering, University of West Attica, P. Ralli & Thivon 250, 12244 Egaleo, Greece
    These authors contributed equally to this work.)

  • Alexios Lekidis

    (Public Power Corporation S.A., Chalkokondili 22, 10432 Athens, Greece
    Department of Energy Systems, Gaiopolis Campus, University of Thessaly, 41500 Larissa, Greece
    These authors contributed equally to this work.)

  • Ioannis Pierros

    (Public Power Corporation S.A., Chalkokondili 22, 10432 Athens, Greece)

  • Apostolos Polyzakis

    (Department of Mechanical Engineering, School of Engineering, University of the Peloponnese, 1 Megalou Alexandrou, Koukouli, 26334 Patras, Greece)

  • Georgios A. Vokas

    (Department of Electrical and Electronics Engineering, University of West Attica, P. Ralli & Thivon 250, 12244 Egaleo, Greece)

  • Elpiniki I. Papageorgiou

    (Department of Energy Systems, Gaiopolis Campus, University of Thessaly, 41500 Larissa, Greece)

Abstract

The energy carrier infrastructure, including both electricity and natural gas sources, has evolved and begun functioning independently over recent years. Nevertheless, recent studies are pivoting toward the exploration of a unified architecture for energy systems that combines Multiple-Energy Carriers into a single network, hence moving away from treating these carriers separately. As an outcome, a new methodology has emerged, integrating electrical, chemical, and heating carriers and centered around the concept of Energy Hubs (EHs). EHs are complex systems that handle the input and output of different energy types, including their conversion and storage. Furthermore, EHs include Combined Heat and Power (CHP) units, which offer greater efficiency and are more environmentally benign than traditional thermal units. Additionally, CHP units provide greater flexibility in the use of natural gas and electricity, thereby offering significant advantages over traditional methods of energy supply. This article introduces a new approach for exploring the steady-state model of EHs and addresses all related optimization issues. These issues encompass the optimal dispatch across multiple carriers, the optimal hub interconnection, and the ideal hub configuration within an energy system. Consequently, this article targets the reduction in the overall system energy costs, while maintaining compliance with all the necessary system constraints. The method is applied in an existing Smart Microgrid (SM) of a typical Greek 17-bus low-voltage distribution network into which EHs are introduced along with Renewable Energy Sources (RESs) and Electric Vehicles (EVs). The SM experiments focus on the optimization of the operational cost using different operational scenarios with distributed generation (DG) and CHP units as well as EVs. A sensitivity analysis is also performed under variations in electricity costs to identify the optimal scenario for handling increased demand.

Suggested Citation

  • Anestis G. Anastasiadis & Alexios Lekidis & Ioannis Pierros & Apostolos Polyzakis & Georgios A. Vokas & Elpiniki I. Papageorgiou, 2024. "Energy Cost Optimization for Incorporating Energy Hubs into a Smart Microgrid with RESs, CHP, and EVs," Energies, MDPI, vol. 17(12), pages 1-26, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2827-:d:1411310
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/12/2827/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/12/2827/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Polimeni, Simone & Moretti, Luca & Martelli, Emanuele & Leva, Sonia & Manzolini, Giampaolo, 2023. "A novel stochastic model for flexible unit commitment of off-grid microgrids," Applied Energy, Elsevier, vol. 331(C).
    2. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.
    3. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    4. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    5. Zia, Muhammad Fahad & Nasir, Mashood & Elbouchikhi, Elhoussin & Benbouzid, Mohamed & Vasquez, Juan C. & Guerrero, Josep M., 2022. "Energy management system for a hybrid PV-Wind-Tidal-Battery-based islanded DC microgrid: Modeling and experimental validation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Clarke, Will Challis & Brear, Michael John & Manzie, Chris, 2020. "Control of an isolated microgrid using hierarchical economic model predictive control," Applied Energy, Elsevier, vol. 280(C).
    7. Hou, Jun & Song, Ziyou & Park, Hyeongjun & Hofmann, Heath & Sun, Jing, 2018. "Implementation and evaluation of real-time model predictive control for load fluctuations mitigation in all-electric ship propulsion systems," Applied Energy, Elsevier, vol. 230(C), pages 62-77.
    8. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    9. Silva, Jéssica Alice A. & López, Juan Camilo & Guzman, Cindy Paola & Arias, Nataly Bañol & Rider, Marcos J. & da Silva, Luiz C.P., 2023. "An IoT-based energy management system for AC microgrids with grid and security constraints," Applied Energy, Elsevier, vol. 337(C).
    10. Manzano, J.M. & Salvador, J.R. & Romaine, J.B. & Alvarado-Barrios, L., 2022. "Economic predictive control for isolated microgrids based on real world demand/renewable energy data and forecast errors," Renewable Energy, Elsevier, vol. 194(C), pages 647-658.
    11. Wang, Shuoqi & Guo, Dongxu & Han, Xuebing & Lu, Languang & Sun, Kai & Li, Weihan & Sauer, Dirk Uwe & Ouyang, Minggao, 2020. "Impact of battery degradation models on energy management of a grid-connected DC microgrid," Energy, Elsevier, vol. 207(C).
    12. Katja Sirviö & Kimmo Kauhaniemi & Aushiq Ali Memon & Hannu Laaksonen & Lauri Kumpulainen, 2020. "Functional Analysis of the Microgrid Concept Applied to Case Studies of the Sundom Smart Grid," Energies, MDPI, vol. 13(16), pages 1-31, August.
    13. Lu, Renzhi & Bai, Ruichang & Ding, Yuemin & Wei, Min & Jiang, Junhui & Sun, Mingyang & Xiao, Feng & Zhang, Hai-Tao, 2021. "A hybrid deep learning-based online energy management scheme for industrial microgrid," Applied Energy, Elsevier, vol. 304(C).
    14. Julian Koch & Astrid Bensmann & Christoph Eckert & Michael Rath & Richard Hanke-Rauschenbach, 2024. "Planning of Reserve Storage to Compensate for Forecast Errors," Energies, MDPI, vol. 17(3), pages 1-16, February.
    15. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    16. Pinciroli, Luca & Baraldi, Piero & Compare, Michele & Zio, Enrico, 2023. "Optimal operation and maintenance of energy storage systems in grid-connected microgrids by deep reinforcement learning," Applied Energy, Elsevier, vol. 352(C).
    17. Nemanja Mišljenović & Matej Žnidarec & Goran Knežević & Damir Šljivac & Andreas Sumper, 2023. "A Review of Energy Management Systems and Organizational Structures of Prosumers," Energies, MDPI, vol. 16(7), pages 1-32, March.
    18. Huan Shen & Xingfa Shen & Yiming Chen, 2024. "Real-Time Microgrid Energy Scheduling Using Meta-Reinforcement Learning," Energies, MDPI, vol. 17(10), pages 1-15, May.
    19. Emilio Ghiani & Alessandro Serpi & Virginia Pilloni & Giuliana Sias & Marco Simone & Gianluca Marcialis & Giuliano Armano & Paolo Attilio Pegoraro, 2018. "A Multidisciplinary Approach for the Development of Smart Distribution Networks," Energies, MDPI, vol. 11(10), pages 1-29, September.
    20. Luis Fernando Grisales-Noreña & Carlos Andrés Ramos-Paja & Daniel Gonzalez-Montoya & Gerardo Alcalá & Quetzalcoatl Hernandez-Escobedo, 2020. "Energy Management in PV Based Microgrids Designed for the Universidad Nacional de Colombia," Sustainability, MDPI, vol. 12(3), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2827-:d:1411310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.