IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3835-d1136645.html
   My bibliography  Save this article

Preliminary Results of Heat Transfer and Pressure Drop Measurements on Al 2 O 3 /H 2 O Nanofluids through a Lattice Channel

Author

Listed:
  • Sandra Corasaniti

    (Department of Industrial Engineering, University of Rome “Tor Vergata”, Via del Politecnico 1, 00133 Rome, Italy)

  • Michele Potenza

    (Department of Industrial Engineering, University of Rome “Tor Vergata”, Via del Politecnico 1, 00133 Rome, Italy)

  • Ivano Petracci

    (Department of Industrial Engineering, University of Rome “Tor Vergata”, Via del Politecnico 1, 00133 Rome, Italy)

Abstract

A nanofluid is composed of a base fluid with a suspension of nanoparticles that improve the base fluid’s thermophysical properties. In this work, the authors have conducted experimental tests on an alumina-based nanofluid ( Al 2 O 3 /H 2 O ) moving inside a 3D-printed lattice channel. The unit cell’s lattice shape can be considered a double X or a double pyramidal truss with a common vertex. The test channel is 80 mm long and has a cross-sectional area, without an internal lattice with that has the dimensions H × W , with H = 5 mm and W = 15 mm. A nanofluid and a lattice duct can represent a good compound technique for enhancing heat transfer. The channel is heated by an electrical resistance wound onto its outer surface. The heat transfer rate absorbed by the nanofluid, the convective heat transfer coefficients, and the pressure drops are evaluated. The experimental tests are carried out at various volumetric contents of nanoparticles ( φ = 1.00%, φ = 1.50% and φ = 2.05%) and at various volumetric flow rates (from 0.2 L/min to 2 L/min). The preliminary results show that in the range between 0.5 L/min ÷ 2.0 L/min, the values of convective heat transfer coefficients are greater than those of pure water ( φ = 0) for all concentrations of Al 2 O 3 ; thus, the nanofluid absorbed a higher thermal power than the water, with an average increase of 6%, 9%, and 14% for 1.00%, 1.50% and 2.05% volume concentrations, respectively. The pressure drops are not very different from those of water; therefore, the use of nanofluids also increased the cooling efficiency of the system.

Suggested Citation

  • Sandra Corasaniti & Michele Potenza & Ivano Petracci, 2023. "Preliminary Results of Heat Transfer and Pressure Drop Measurements on Al 2 O 3 /H 2 O Nanofluids through a Lattice Channel," Energies, MDPI, vol. 16(9), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3835-:d:1136645
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3835/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3835/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Trisaksri, Visinee & Wongwises, Somchai, 2007. "Critical review of heat transfer characteristics of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 512-523, April.
    2. Temiloluwa O Scott & Daniel R E Ewim & Andrew C Eloka-Eboka, 2022. "Hybrid nanofluids flow and heat transfer in cavities: a technological review [Nanofluid flow and heat transfer in porous media: a review of the latest developments]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 1104-1123.
    3. Daungthongsuk, Weerapun & Wongwises, Somchai, 2007. "A critical review of convective heat transfer of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 797-817, June.
    4. Xiaoxin Zeng & Hao Yu & Tianbiao He & Ning Mao, 2022. "A Numerical Study on Heat Transfer Characteristics of a Novel Rectangular Grooved Microchannel with Al 2 O 3 /Water Nanofluids," Energies, MDPI, vol. 15(19), pages 1-18, September.
    5. Janusz T. Cieśliński & Dawid Lubocki & Slawomir Smolen, 2022. "Impact of Temperature and Nanoparticle Concentration on Turbulent Forced Convective Heat Transfer of Nanofluids," Energies, MDPI, vol. 15(20), pages 1-22, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahian, Omid & Mahmud, Shohel & Heris, Saeed Zeinali, 2012. "Analysis of entropy generation between co-rotating cylinders using nanofluids," Energy, Elsevier, vol. 44(1), pages 438-446.
    2. Che Sidik, Nor Azwadi & Aisyah Razali, Siti, 2014. "Lattice Boltzmann method for convective heat transfer of nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 864-875.
    3. Salahuddin, T. & Sakinder, S. & Alharbi, Sayer Obaid & Abdelmalek, Zahra, 2021. "A brief comparative study of gamma alumina–water and gamma alumina–EG nanofluids flow near a solid sphere," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 487-500.
    4. Jacek Fal & Omid Mahian & Gaweł Żyła, 2018. "Nanofluids in the Service of High Voltage Transformers: Breakdown Properties of Transformer Oils with Nanoparticles, a Review," Energies, MDPI, vol. 11(11), pages 1-46, October.
    5. Sharma, Anuj Kumar & Tiwari, Arun Kumar & Dixit, Amit Rai, 2016. "Rheological behaviour of nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 779-791.
    6. Sarkar, Jahar, 2011. "A critical review on convective heat transfer correlations of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3271-3277, August.
    7. Fasano, Matteo & Bozorg Bigdeli, Masoud & Vaziri Sereshk, Mohammad Rasool & Chiavazzo, Eliodoro & Asinari, Pietro, 2015. "Thermal transmittance of carbon nanotube networks: Guidelines for novel thermal storage systems and polymeric material of thermal interest," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1028-1036.
    8. Suman, Siddharth & Khan, Mohd. Kaleem & Pathak, Manabendra, 2015. "Performance enhancement of solar collectors—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 192-210.
    9. Thirumaran Balaji & Dhasan Mohan Lal & Chandrasekaran Selvam, 2023. "A Critical Review on the Thermal Transport Characteristics of Graphene-Based Nanofluids," Energies, MDPI, vol. 16(6), pages 1-46, March.
    10. Sarkar, Jahar & Ghosh, Pradyumna & Adil, Arjumand, 2015. "A review on hybrid nanofluids: Recent research, development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 164-177.
    11. Sureshkumar, R. & Mohideen, S. Tharves & Nethaji, N., 2013. "Heat transfer characteristics of nanofluids in heat pipes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 397-410.
    12. Chandrasekar, M. & Suresh, S. & Senthilkumar, T., 2012. "Mechanisms proposed through experimental investigations on thermophysical properties and forced convective heat transfer characteristics of various nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3917-3938.
    13. Vanaki, Sh.M. & Ganesan, P. & Mohammed, H.A., 2016. "Numerical study of convective heat transfer of nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1212-1239.
    14. Gupta, Munish & Singh, Vinay & Kumar, Rajesh & Said, Z., 2017. "A review on thermophysical properties of nanofluids and heat transfer applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 638-670.
    15. Islam, M.M. & Hasanuzzaman, M. & Rahim, N.A. & Pandey, A.K. & Rawa, M. & Kumar, L., 2021. "Real time experimental performance investigation of a NePCM based photovoltaic thermal system: An energetic and exergetic approach," Renewable Energy, Elsevier, vol. 172(C), pages 71-87.
    16. Mandal, Swaroop Kumar & Kumar, Samarjeet & Singh, Purushottam Kumar & Mishra, Santosh Kumar & Singh, D.K., 2020. "Performance investigation of nanocomposite based solar water heater," Energy, Elsevier, vol. 198(C).
    17. Taghizadeh-Tabari, Zohre & Zeinali Heris, Saeed & Moradi, Maryam & Kahani, Mostafa, 2016. "The study on application of TiO2/water nanofluid in plate heat exchanger of milk pasteurization industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1318-1326.
    18. Ambreen, Tehmina & Kim, Man-Hoe, 2018. "Heat transfer and pressure drop correlations of nanofluids: A state of art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 564-583.
    19. Godson, Lazarus & Raja, B. & Mohan Lal, D. & Wongwises, S., 2010. "Enhancement of heat transfer using nanofluids--An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 629-641, February.
    20. Mohammed, Kafel A. & Abu Talib, A.R. & Nuraini, A.A. & Ahmed, K.A., 2017. "Review of forced convection nanofluids through corrugated facing step," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 234-241.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3835-:d:1136645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.