IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3820-d1136412.html
   My bibliography  Save this article

A Parametric Physics-Informed Deep Learning Method for Probabilistic Design of Thermal Protection Systems

Author

Listed:
  • Runlin Zhang

    (School of Mathematics and Science, North China Electric Power University, Beijing 102206, China)

  • Nuo Xu

    (School of Mathematics and Science, North China Electric Power University, Beijing 102206, China)

  • Kai Zhang

    (China Academy of Launch Vehicle Technology, Beijing 100076, China)

  • Lei Wang

    (School of Mathematics and Science, North China Electric Power University, Beijing 102206, China)

  • Gui Lu

    (School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

Abstract

Precise and efficient calculations are necessary to accurately assess the effects of thermal protection system (TPS) uncertainties on aerospacecrafts. This paper presents a probabilistic design methodology for TPSs based on physics-informed neural networks (PINNs) with parametric uncertainty. A typical thermal coating system is used to investigate the impact of uncertainty on the thermal properties of insulation materials and to evaluate the resulting temperature distribution. A sensitivity analysis is conducted to identify the influence of the parameters on the thermal response. The results show that PINNs can produce quick and accurate predictions of the temperature of insulation materials. The accuracy of the PINN model is comparable to that of a response surface surrogate model. Still, the computational time required by the PINN model is only a fraction of the latter. Considering both computational efficiency and accuracy, the PINN model can be used as a high-precision surrogate model to guide the TPS design effectively.

Suggested Citation

  • Runlin Zhang & Nuo Xu & Kai Zhang & Lei Wang & Gui Lu, 2023. "A Parametric Physics-Informed Deep Learning Method for Probabilistic Design of Thermal Protection Systems," Energies, MDPI, vol. 16(9), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3820-:d:1136412
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3820/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3820/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdulwahab Alqahtani & Xupeng He & Bicheng Yan & Hussein Hoteit, 2023. "Uncertainty Analysis of CO 2 Storage in Deep Saline Aquifers Using Machine Learning and Bayesian Optimization," Energies, MDPI, vol. 16(4), pages 1-16, February.
    2. M.-Elisabeth Paté-Cornell & Paul S. Fischbeck, 1994. "Risk Management for the Tiles of the Space Shuttle," Interfaces, INFORMS, vol. 24(1), pages 64-86, February.
    3. Justin Sirignano & Konstantinos Spiliopoulos, 2017. "DGM: A deep learning algorithm for solving partial differential equations," Papers 1708.07469, arXiv.org, revised Sep 2018.
    4. Yiwei Dong & Ertai Wang & Yancheng You & Chunping Yin & Zongpu Wu, 2019. "Thermal Protection System and Thermal Management for Combined-Cycle Engine: Review and Prospects," Energies, MDPI, vol. 12(2), pages 1-51, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liangcai Zhou & Long Huo & Linlin Liu & Hao Xu & Rui Chen & Xin Chen, 2025. "Optimal Power Flow for High Spatial and Temporal Resolution Power Systems with High Renewable Energy Penetration Using Multi-Agent Deep Reinforcement Learning," Energies, MDPI, vol. 18(7), pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William Lefebvre & Enzo Miller, 2021. "Linear-quadratic stochastic delayed control and deep learning resolution," Working Papers hal-03145949, HAL.
    2. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Deep Stochastic Optimization in Finance," Papers 2205.04604, arXiv.org.
    3. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
    4. Xu, Qing & Li, Haowei & Feng, Yaoxun & Li, Xiaoning & Ling, Changming & Zhou, Chaoying & Qin, Jiang, 2020. "Dynamic thermo-physical characteristics of high temperature gaseous hydrocarbon fuel thermal power generation for regeneratively cooled hypersonic propulsion system," Energy, Elsevier, vol. 211(C).
    5. Rong Du & Duy-Minh Dang, 2023. "Fourier Neural Network Approximation of Transition Densities in Finance," Papers 2309.03966, arXiv.org, revised Sep 2024.
    6. Gero Junike & Hauke Stier, 2024. "Enhancing Fourier pricing with machine learning," Papers 2412.05070, arXiv.org.
    7. Ali Al-Aradi & Adolfo Correia & Danilo de Frietas Naiff & Gabriel Jardim & Yuri Saporito, 2019. "Extensions of the Deep Galerkin Method," Papers 1912.01455, arXiv.org, revised Apr 2022.
    8. Salah A. Faroughi & Ramin Soltanmohammadi & Pingki Datta & Seyed Kourosh Mahjour & Shirko Faroughi, 2023. "Physics-Informed Neural Networks with Periodic Activation Functions for Solute Transport in Heterogeneous Porous Media," Mathematics, MDPI, vol. 12(1), pages 1-23, December.
    9. Jiequn Han & Ruimeng Hu & Jihao Long, 2020. "Convergence of Deep Fictitious Play for Stochastic Differential Games," Papers 2008.05519, arXiv.org, revised Mar 2021.
    10. Dehghani, Hamidreza & Zilian, Andreas, 2021. "A hybrid MGA-MSGD ANN training approach for approximate solution of linear elliptic PDEs," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 398-417.
    11. Jesús Fernández-Villaverde & Galo Nuño & Jesse Perla, 2024. "Taming the Curse of Dimensionality: Quantitative Economics with Deep Learning," NBER Working Papers 33117, National Bureau of Economic Research, Inc.
    12. Jialiang Luo & Harry Zheng, 2023. "Deep Neural Network Solution for Finite State Mean Field Game with Error Estimation," Dynamic Games and Applications, Springer, vol. 13(3), pages 859-896, September.
    13. Olivier Bokanowski & Averil Prost & Xavier Warin, 2023. "Neural networks for first order HJB equations and application to front propagation with obstacle terms," Partial Differential Equations and Applications, Springer, vol. 4(5), pages 1-36, October.
    14. Ying Li & Longxiang Xu & Shihui Ying, 2022. "DWNN: Deep Wavelet Neural Network for Solving Partial Differential Equations," Mathematics, MDPI, vol. 10(12), pages 1-35, June.
    15. Li, Wei & Zhang, Ying & Huang, Dongmei & Rajic, Vesna, 2022. "Study on stationary probability density of a stochastic tumor-immune model with simulation by ANN algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    16. Li, Jiaheng & Li, Biao, 2022. "Mix-training physics-informed neural networks for the rogue waves of nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    17. Laura Leal & Mathieu Lauri`ere & Charles-Albert Lehalle, 2020. "Learning a functional control for high-frequency finance," Papers 2006.09611, arXiv.org, revised Feb 2021.
    18. Victor Boussange & Sebastian Becker & Arnulf Jentzen & Benno Kuckuck & Loïc Pellissier, 2023. "Deep learning approximations for non-local nonlinear PDEs with Neumann boundary conditions," Partial Differential Equations and Applications, Springer, vol. 4(6), pages 1-51, December.
    19. Antoine Jacquier & Zan Zuric, 2023. "Random neural networks for rough volatility," Papers 2305.01035, arXiv.org.
    20. Liu, Ye & Li, Jie-Ying & Zhang, Li-Sheng & Guo, Lei-Lei & Zhang, Zhi-Yong, 2024. "Symmetry group based domain decomposition to enhance physics-informed neural networks for solving partial differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3820-:d:1136412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.