IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3699-d1132923.html
   My bibliography  Save this article

Integrating Internet-of-Things-Based Houses into Demand Response Programs in Smart Grid

Author

Listed:
  • Walied Alharbi

    (Department of Electrical Engineering, College of Engineering, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11564, Saudi Arabia)

Abstract

This paper presents a novel framework that mathematically and optimally quantifies demand response (DR) provisions, considering the power availability of Internet of Things (IoT)-based house load management for the provision of flexibility in the smart grid. The proposed framework first models house loads using IoT windows and occupant behavior, and then integrates IoT-based house loads into DR programs based on a novel mathematical optimization model to provide the optimal power flexibility considering the penetration of IoT-based houses in distribution systems. Numerical results that consider a 33-bus distribution system are reported and discussed to demonstrate the effectiveness of flexibility provisions, from integrating IoT-based houses into DR programs, on peak load reduction and system capacity enhancement.

Suggested Citation

  • Walied Alharbi, 2023. "Integrating Internet-of-Things-Based Houses into Demand Response Programs in Smart Grid," Energies, MDPI, vol. 16(9), pages 1-13, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3699-:d:1132923
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3699/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3699/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hui, Hongxun & Ding, Yi & Shi, Qingxin & Li, Fangxing & Song, Yonghua & Yan, Jinyue, 2020. "5G network-based Internet of Things for demand response in smart grid: A survey on application potential," Applied Energy, Elsevier, vol. 257(C).
    2. Luis Alejandro Arias & Edwin Rivas & Francisco Santamaria & Victor Hernandez, 2018. "A Review and Analysis of Trends Related to Demand Response," Energies, MDPI, vol. 11(7), pages 1-24, June.
    3. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Liya & Hui, Hongxun & Wang, Sheng & Song, Yonghua, 2024. "Coordinated optimization of power-communication coupling networks for dispatching large-scale flexible loads to provide operating reserve," Applied Energy, Elsevier, vol. 359(C).
    2. Turki Alsuwian & Aiman Shahid Butt & Arslan Ahmed Amin, 2022. "Smart Grid Cyber Security Enhancement: Challenges and Solutions—A Review," Sustainability, MDPI, vol. 14(21), pages 1-21, October.
    3. Jeddi, Babak & Mishra, Yateendra & Ledwich, Gerard, 2021. "Distributed load scheduling in residential neighborhoods for coordinated operation of multiple home energy management systems," Applied Energy, Elsevier, vol. 300(C).
    4. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    5. Ovidiu Ivanov & Samiran Chattopadhyay & Soumya Banerjee & Bogdan-Constantin Neagu & Gheorghe Grigoras & Mihai Gavrilas, 2020. "A Novel Algorithm with Multiple Consumer Demand Response Priorities in Residential Unbalanced LV Electricity Distribution Networks," Mathematics, MDPI, vol. 8(8), pages 1-24, July.
    6. Mehar Ullah & Daniel Gutierrez-Rojas & Eero Inkeri & Tero Tynjälä & Pedro H. J. Nardelli, 2022. "Operation of Power-to-X-Related Processes Based on Advanced Data-Driven Methods: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-17, October.
    7. Sun, Mingyi & Zhao, Xia & Tan, Hong & Li, Xinyi, 2022. "Coordinated operation of the integrated electricity-water distribution system and water-cooled 5G base stations," Energy, Elsevier, vol. 238(PC).
    8. Wang, Jianxiao & An, Qi & Zhao, Yue & Pan, Guangsheng & Song, Jie & Hu, Qinran & Tan, Chin-Woo, 2023. "Role of electrolytic hydrogen in smart city decarbonization in China," Applied Energy, Elsevier, vol. 336(C).
    9. Xiao, Jucheng & He, Guangyu & Fan, Shuai & Zhang, Siyuan & Wu, Qing & Li, Zuyi, 2020. "Decentralized transfer of contingency reserve: Framework and methodology," Applied Energy, Elsevier, vol. 278(C).
    10. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    11. Pinto, Giuseppe & Piscitelli, Marco Savino & Vázquez-Canteli, José Ramón & Nagy, Zoltán & Capozzoli, Alfonso, 2021. "Coordinated energy management for a cluster of buildings through deep reinforcement learning," Energy, Elsevier, vol. 229(C).
    12. Kong, Xiangyu & Sun, Fangyuan & Huo, Xianxu & Li, Xue & Shen, Yu, 2020. "Hierarchical optimal scheduling method of heat-electricity integrated energy system based on Power Internet of Things," Energy, Elsevier, vol. 210(C).
    13. Michael Schoepf & Martin Weibelzahl & Lisa Nowka, 2018. "The Impact of Substituting Production Technologies on the Economic Demand Response Potential in Industrial Processes," Energies, MDPI, vol. 11(9), pages 1-13, August.
    14. Zhao, Guanjia & Cui, Zhipeng & Xu, Jing & Liu, Wenhao & Ma, Suxia, 2022. "Hybrid modeling-based digital twin for performance optimization with flexible operation in the direct air-cooling power unit," Energy, Elsevier, vol. 254(PC).
    15. Alizadeh, Ali & Kamwa, Innocent & Moeini, Ali & Mohseni-Bonab, Seyed Masoud, 2023. "Energy management in microgrids using transactive energy control concept under high penetration of Renewables; A survey and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    16. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    17. Naser Hossein Motlagh & Mahsa Mohammadrezaei & Julian Hunt & Behnam Zakeri, 2020. "Internet of Things (IoT) and the Energy Sector," Energies, MDPI, vol. 13(2), pages 1-27, January.
    18. Cerna, Fernando V. & Pourakbari-Kasmaei, Mahdi & Barros, Raone G. & Naderi, Ehsan & Lehtonen, Matti & Contreras, Javier, 2023. "Optimal operating scheme of neighborhood energy storage communities to improve power grid performance in smart cities," Applied Energy, Elsevier, vol. 331(C).
    19. Sylwia Mrozowska & Jan A. Wendt & Krzysztof Tomaszewski, 2021. "The Challenges of Poland’s Energy Transition," Energies, MDPI, vol. 14(23), pages 1-22, December.
    20. Magdalena Krystyna Wyrwicka & Ewa Więcek-Janka & Łukasz Brzeziński, 2023. "Transition to Sustainable Energy System for Smart Cities—Literature Review," Energies, MDPI, vol. 16(21), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3699-:d:1132923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.