IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3130-d1111306.html
   My bibliography  Save this article

Estimation Method of Short-Circuit Current Contribution of Inverter-Based Resources for Symmetrical Faults

Author

Listed:
  • Murillo Cobe Vargas

    (Federal Institute of Espirito Santo, Al. Francisco Vieira Simões, 720, Guarapari 29216-795, Brazil)

  • Oureste Elias Batista

    (Electrical Engineering Department, Federal University of Espirito Santo, Av. Fernando Ferrari 514, Vitoria 29075-910, Brazil)

  • Yongheng Yang

    (College of Electrical Engineering, Zhejiang University, Zheda Rd. 38, Xihu, Hangzhou 310027, China)

Abstract

This paper proposes a practical approach to estimate the symmetrical short-circuit current (SCC) levels in overcurrent protection devices (OCPDs) installed on radial feeders for any penetration level of inverter-based distributed energy resources (DERs). The proposed method restores the lost phase protection coordination by estimating SCC values and changing the TMS of OCPDs accordingly. The method is validated by comparing the results with simulations on the IEEE 34-Node Test Feeder using MATLAB/Simulink, which shows an average error of 1.5% and a maximum error of 3.0%. For a 100% penetration level, the SCC variation through OCPDs installed on the main fault trunk (MFT) exceeds ± 10%, leading to compromised phase protection coordination. The SCC flowing reversely through OCPDs on lateral branches and the fault on the MFT could cause improper tripping. Higher SCC levels are estimated and measured for fault impedances equal to zero. The phase protection is restored by changing the TMS of OCPDs using the estimated values. The study proposes two phase protection schemes to accommodate inverter-based DERs injecting 1.2 pu and 2.0 pu of SCC for a 100% penetration level. This study contributes to improving the protection coordination of distribution networks with high penetration levels of DERs. The findings have practical implications for distribution system operators and planners to maintain safe and reliable operation of distribution feeders.

Suggested Citation

  • Murillo Cobe Vargas & Oureste Elias Batista & Yongheng Yang, 2023. "Estimation Method of Short-Circuit Current Contribution of Inverter-Based Resources for Symmetrical Faults," Energies, MDPI, vol. 16(7), pages 1-27, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3130-:d:1111306
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3130/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3130/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nikola Simic & Luka Strezoski & Boris Dumnic, 2021. "Short-Circuit Analysis of DER-Based Microgrids in Connected and Islanded Modes of Operation," Energies, MDPI, vol. 14(19), pages 1-16, October.
    2. Razavi, Seyed-Ehsan & Rahimi, Ehsan & Javadi, Mohammad Sadegh & Nezhad, Ali Esmaeel & Lotfi, Mohamed & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Impact of distributed generation on protection and voltage regulation of distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 157-167.
    3. Aboutaleb Haddadi & Evangelos Farantatos & Ilhan Kocar & Ulas Karaagac, 2021. "Impact of Inverter Based Resources on System Protection," Energies, MDPI, vol. 14(4), pages 1-21, February.
    4. Cho, Namhun & Yun, Sangwon & Jung, Jaesung, 2020. "Shunt fault analysis methodology for power distribution networks with inverter-based distributed energy resources of the Korea Electric Power Corporation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Luiz Guilherme Riva Tonini & Renato Santos Freire Ferraz & Oureste Elias Batista, 2022. "Load Flow and Short-Circuit Methods for Grids Dominated by Inverter-Based Distributed Generation," Energies, MDPI, vol. 15(13), pages 1-15, June.
    6. Wookyu Chae & Jung-Hun Lee & Woo-Hyun Kim & Sungwook Hwang & Jun-Oh Kim & Jae-Eon Kim, 2021. "Adaptive Protection Coordination Method Design of Remote Microgrid for Three-Phase Short Circuit Fault," Energies, MDPI, vol. 14(22), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.
    2. Angelo Lunardi & Eliomar R. Conde D & Jefferson de Assis & Darlan A. Fernandes & Alfeu J. Sguarezi Filho, 2021. "Model Predictive Control with Modulator Applied to Grid Inverter under Voltage Distorted," Energies, MDPI, vol. 14(16), pages 1-13, August.
    3. Yassir Maataoui & Hamid Chekenbah & Omar Boutfarjoute & Vicenç Puig & Rafik Lasri, 2023. "A Coordinated Voltage Regulation Algorithm of a Power Distribution Grid with Multiple Photovoltaic Distributed Generators Based on Active Power Curtailment and On-Line Tap Changer," Energies, MDPI, vol. 16(14), pages 1-17, July.
    4. Pereira, Luan D.L. & Yahyaoui, Imene & Fiorotti, Rodrigo & de Menezes, Luíza S. & Fardin, Jussara F. & Rocha, Helder R.O. & Tadeo, Fernando, 2022. "Optimal allocation of distributed generation and capacitor banks using probabilistic generation models with correlations," Applied Energy, Elsevier, vol. 307(C).
    5. Namhun Cho & Myungseok Yoon & Sungyun Choi, 2022. "Impact of Transformer Topology on Short-Circuit Analysis in Distribution Systems with Inverter-Based Distributed Generations," Sustainability, MDPI, vol. 14(15), pages 1-23, August.
    6. Konstantinos Kotsalos & Ismael Miranda & Jose Luis Dominguez-Garcia & Helder Leite & Nuno Silva & Nikos Hatziargyriou, 2020. "Exploiting OLTC and BESS Operation Coordinated with Active Network Management in LV Networks," Sustainability, MDPI, vol. 12(8), pages 1-25, April.
    7. Angelo Lunardi & Eliomar R. Conde D. & Renato M. Monaro & Darlan A. Fernandes & Alfeu J. Sguarezi Filho, 2022. "Robust Predictive Control with Three-Vector Modulation Connected to the Power Grid," Energies, MDPI, vol. 15(6), pages 1-15, March.
    8. Sung-Moon Choi & Byeong-Gill Han & Mi-Young Kim & Dae-Seok Rho, 2022. "Operation Algorithm for Protection Coordination Device in High-Voltage Customer with ESS for Demand Management," Energies, MDPI, vol. 15(9), pages 1-12, April.
    9. Zhang, Jianhua & Ballas, Dimitris & Liu, Xiaolong, 2023. "Neighbourhood-level spatial determinants of residential solar photovoltaic adoption in the Netherlands," Renewable Energy, Elsevier, vol. 206(C), pages 1239-1248.
    10. Teketay Mulu Beza & Yen-Chih Huang & Cheng-Chien Kuo, 2020. "A Hybrid Optimization Approach for Power Loss Reduction and DG Penetration Level Increment in Electrical Distribution Network," Energies, MDPI, vol. 13(22), pages 1-17, November.
    11. Ramdhan Halid Siregar & Yuwaldi Away & Tarmizi & Akhyar, 2023. "Minimizing Power Losses for Distributed Generation (DG) Placements by Considering Voltage Profiles on Distribution Lines for Different Loads Using Genetic Algorithm Methods," Energies, MDPI, vol. 16(14), pages 1-25, July.
    12. Mah, Angel Xin Yee & Ho, Wai Shin & Hassim, Mimi H. & Hashim, Haslenda & Ling, Gabriel Hoh Teck & Ho, Chin Siong & Muis, Zarina Ab, 2021. "Optimization of a standalone photovoltaic-based microgrid with electrical and hydrogen loads," Energy, Elsevier, vol. 235(C).
    13. Dillan Kyle Ockhuis & Maarten Kamper, 2021. "Potential of Slip Synchronous Wind Turbine Systems: Grid Support and Mechanical Load Mitigation," Energies, MDPI, vol. 14(16), pages 1-15, August.
    14. Bracco, Stefano & Bianchi, Enrico & Bianco, Giovanni & Giacchino, Alessandro & Ramaglia, Alessandro & Delfino, Federico, 2022. "On the participation of small-scale high performance combined heat and power plants to the Italian ancillary services market within Virtually Aggregated Mixed Units," Energy, Elsevier, vol. 239(PE).
    15. Saif Ul Islam & Soobae Kim, 2023. "Design of an Optimal Adoptive Fault Ride through Scheme for Overcurrent Protection of Grid-Forming Inverter-Based Resources under Symmetrical Faults," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    16. Yee Mah, Angel Xin & Ho, Wai Shin & Hassim, Mimi H. & Hashim, Haslenda & Liew, Peng Yen & Muis, Zarina Ab, 2021. "Targeting and scheduling of standalone renewable energy system with liquid organic hydrogen carrier as energy storage," Energy, Elsevier, vol. 218(C).
    17. Kryonidis, Georgios C. & Kontis, Eleftherios O. & Papadopoulos, Theofilos A. & Pippi, Kalliopi D. & Nousdilis, Angelos I. & Barzegkar-Ntovom, Georgios A. & Boubaris, Alexandros D. & Papanikolaou, Nick, 2021. "Ancillary services in active distribution networks: A review of technological trends from operational and online analysis perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    18. Mah, Angel Xin Yee & Ho, Wai Shin & Hassim, Mimi H. & Hashim, Haslenda & Ling, Gabriel Hoh Teck & Ho, Chin Siong & Muis, Zarina Ab, 2021. "Optimization of photovoltaic-based microgrid with hybrid energy storage: A P-graph approach," Energy, Elsevier, vol. 233(C).
    19. Jasim Ghaeb & Samer Salah & Firas Obeidat, 2022. "Intelligent Control for Voltage Regulation in the Distribution Network Equipped with PV Farm," Energies, MDPI, vol. 16(1), pages 1-15, December.
    20. Ahmed Y. Hatata & Mohamed A. Essa & Bishoy E. Sedhom, 2022. "Implementation and Design of FREEDM System Differential Protection Method Based on Internet of Things," Energies, MDPI, vol. 15(15), pages 1-24, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3130-:d:1111306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.