IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3036-d1108229.html
   My bibliography  Save this article

A Novel Solar System of Electricity and Heat

Author

Listed:
  • Sergii Mamykin

    (V.E. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 03028 Kyiv, Ukraine)

  • Roni Z. Shneck

    (Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel)

  • Bohdan Dzundza

    (Department of Computer Engineering and Electronics, Vasyl Stefanyk Precarpathian National University, 76000 Ivano-Frankivsk, Ukraine)

  • Feng Gao

    (State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China)

  • Zinovi Dashevsky

    (Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel)

Abstract

Thermoelectric devices may have an essential role in the development of fuel-saving, environmentallyfriendly, and cost-effective energy sources for power generation based on the direct conversion of heat into electrical energy. A wide usage of thermoelectric energy systems already exhibits high reliability and long operation time in the space industry and gas pipe systems. The development and application of solar thermoelectric generators (TEGs) arelimited mainly by relatively low thermoelectric conversion efficiency. Forthe first time, we propose to use the direct energy conversion of solar energy by TEGs based on the high-performance multilayer thermoelectric modules with electric efficiency of ~15%. Solar energy was absorbed and converted to thermal energy, which is accumulated by a phase-change material (aluminum alloys at solidification temperature ~900 K). The heat flow from the accumulator through the thermoelectric convertor (generator) allows electrical power to be obtained and the exhaust energy to be used for household purposes (heating and hot water supply) or for the operation of a plant for thermal desalination of water.

Suggested Citation

  • Sergii Mamykin & Roni Z. Shneck & Bohdan Dzundza & Feng Gao & Zinovi Dashevsky, 2023. "A Novel Solar System of Electricity and Heat," Energies, MDPI, vol. 16(7), pages 1-11, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3036-:d:1108229
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3036/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3036/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zinovi Dashevsky & Albert Jarashneli & Yaakov Unigovski & Bohdan Dzunzda & Feng Gao & Roni Z. Shneck, 2022. "Development of a High Perfomance Gas Thermoelectric Generator (TEG) with Possibible Use of Waste Heat," Energies, MDPI, vol. 15(11), pages 1-17, May.
    2. Karami Rad, Meysam & Rezania, Alireza & Omid, Mahmoud & Rajabipour, Ali & Rosendahl, Lasse, 2019. "Study on material properties effect for maximization of thermoelectric power generation," Renewable Energy, Elsevier, vol. 138(C), pages 236-242.
    3. Nathan P. Siegel, 2012. "Thermal energy storage for solar power production," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 1(2), pages 119-131, September.
    4. Li, Guiqiang & Shittu, Samson & zhou, Kai & Zhao, Xudong & Ma, Xiaoli, 2019. "Preliminary experiment on a novel photovoltaic-thermoelectric system in summer," Energy, Elsevier, vol. 188(C).
    5. Sanzana Tabassum & Tanvin Rahman & Ashraf Ul Islam & Sumayya Rahman & Debopriya Roy Dipta & Shidhartho Roy & Naeem Mohammad & Nafiu Nawar & Eklas Hossain, 2021. "Solar Energy in the United States: Development, Challenges and Future Prospects," Energies, MDPI, vol. 14(23), pages 1-65, December.
    6. Mohamed Amine Zoui & Saïd Bentouba & John G. Stocholm & Mahmoud Bourouis, 2020. "A Review on Thermoelectric Generators: Progress and Applications," Energies, MDPI, vol. 13(14), pages 1-32, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Amine Zoui & Saïd Bentouba & John G. Stocholm & Mahmoud Bourouis, 2020. "A Review on Thermoelectric Generators: Progress and Applications," Energies, MDPI, vol. 13(14), pages 1-32, July.
    2. Liao, Tianjun & He, Qijiao & Xu, Qidong & Dai, Yawen & Cheng, Chun & Ni, Meng, 2020. "Performance evaluation and optimization of a perovskite solar cell-thermoelectric generator hybrid system," Energy, Elsevier, vol. 201(C).
    3. Fan, Zhi-Ping & Cai, Siqin & Guo, Dongliang & Xu, Bo, 2022. "Facing the uncertainty of renewable energy production: Production decisions of a power plant with different risk attitudes," Renewable Energy, Elsevier, vol. 199(C), pages 1237-1247.
    4. Tayfun Uyanık & Emir Ejder & Yasin Arslanoğlu & Yunus Yalman & Yacine Terriche & Chun-Lien Su & Josep M. Guerrero, 2022. "Thermoelectric Generators as an Alternative Energy Source in Shipboard Microgrids," Energies, MDPI, vol. 15(12), pages 1-14, June.
    5. Xiaoyu Liu & Chong Zhao & Hao Guo & Zhongcheng Wang, 2022. "Performance Analysis of Ship Exhaust Gas Temperature Differential Power Generation," Energies, MDPI, vol. 15(11), pages 1-17, May.
    6. Nuttawat Parse & Chakrit Pongkitivanichkul & Supree Pinitsoontorn, 2022. "Machine Learning Approach for Maximizing Thermoelectric Properties of BiCuSeO and Discovering New Doping Element," Energies, MDPI, vol. 15(3), pages 1-13, January.
    7. Jian Li & Qingfeng Song & Ruiheng Liu & Hongliang Dong & Qihao Zhang & Xun Shi & Shengqiang Bai & Lidong Chen, 2022. "Thermoelectric Performance Optimization of n-Type La 3− x Sm x Te 4 /Ni Composites via Sm Doping," Energies, MDPI, vol. 15(7), pages 1-9, March.
    8. Xuan, Qingdong & Li, Guiqiang & Yang, Honglun & Gao, Cai & Jiang, Bin & Liu, Xiangnong & Ji, Jie & Zhao, Xudong & Pei, Gang, 2021. "Performance evaluation for the dielectric asymmetric compound parabolic concentrator with almost unity angular acceptance efficiency," Energy, Elsevier, vol. 233(C).
    9. Shittu, Samson & Li, Guiqiang & Xuan, Qindong & Zhao, Xudong & Ma, Xiaoli & Cui, Yu, 2020. "Electrical and mechanical analysis of a segmented solar thermoelectric generator under non-uniform heat flux," Energy, Elsevier, vol. 199(C).
    10. Allik, Alo & Märss, Maido & Uiga, Jaanus & Annuk, Andres, 2016. "Optimization of the inverter size for grid-connected residential wind energy systems with peak shaving," Renewable Energy, Elsevier, vol. 99(C), pages 1116-1125.
    11. Kang, Yong-Kwon & Joung, Jaewon & Kim, Minseong & Jeong, Jae-Weon, 2023. "Energy impact of heat pipe-assisted microencapsulated phase change material heat sink for photovoltaic and thermoelectric generator hybrid panel," Renewable Energy, Elsevier, vol. 207(C), pages 298-308.
    12. Mykola Moroz & Fiseha Tesfaye & Pavlo Demchenko & Myroslava Prokhorenko & Nataliya Yarema & Daniel Lindberg & Oleksandr Reshetnyak & Leena Hupa, 2021. "The Equilibrium Phase Formation and Thermodynamic Properties of Functional Tellurides in the Ag–Fe–Ge–Te System," Energies, MDPI, vol. 14(5), pages 1-15, February.
    13. Goswami, Rohtash & Das, Ranjan, 2020. "Waste heat recovery from a biomass heat engine for thermoelectric power generation using two-phase thermosyphons," Renewable Energy, Elsevier, vol. 148(C), pages 1280-1291.
    14. Xuan, Qingdong & Li, Guiqiang & Lu, Yashun & Zhao, Bin & Wang, Fuqiang & Pei, Gang, 2021. "Daylighting utilization and uniformity comparison for a concentrator-photovoltaic window in energy saving application on the building," Energy, Elsevier, vol. 214(C).
    15. Hong, Wenpeng & Li, Boyu & Li, Haoran & Niu, Xiaojuan & Li, Yan & Lan, Jingrui, 2022. "Recent progress in thermal energy recovery from the decoupled photovoltaic/thermal system equipped with spectral splitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    16. Zhe Zhang & Yuqi Zhang & Xiaomei Sui & Wenbin Li & Daochun Xu, 2020. "Performance of Thermoelectric Power-Generation System for Sufficient Recovery and Reuse of Heat Accumulated at Cold Side of TEG with Water-Cooling Energy Exchange Circuit," Energies, MDPI, vol. 13(21), pages 1-18, October.
    17. André, Laurie & Abanades, Stéphane & Flamant, Gilles, 2016. "Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 703-715.
    18. Zhang, Heng & Yue, Han & Huang, Jiguang & Liang, Kai & Chen, Haiping, 2021. "Experimental studies on a low concentrating photovoltaic/thermal (LCPV/T) collector with a thermoelectric generator (TEG) module," Renewable Energy, Elsevier, vol. 171(C), pages 1026-1040.
    19. José M. Cardemil & Ignacio Calderón-Vásquez & Alan Pino & Allan Starke & Ian Wolde & Carlos Felbol & Leonardo F. L. Lemos & Vinicius Bonini & Ignacio Arias & Javier Iñigo-Labairu & Jürgen Dersch & Rod, 2022. "Assessing the Uncertainties of Simulation Approaches for Solar Thermal Systems Coupled to Industrial Processes," Energies, MDPI, vol. 15(9), pages 1-29, May.
    20. Wenwei Lian & Bingyan Wang & Tianming Gao & Xiaoyan Sun & Yan Zhang & Hongmei Duan, 2022. "Coordinated Development of Renewable Energy: Empirical Evidence from China," Sustainability, MDPI, vol. 14(18), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3036-:d:1108229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.