IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1314-d507651.html
   My bibliography  Save this article

The Equilibrium Phase Formation and Thermodynamic Properties of Functional Tellurides in the Ag–Fe–Ge–Te System

Author

Listed:
  • Mykola Moroz

    (Department of Chemistry and Physics, National University of Water and Environmental Engineering, 33028 Rivne, Ukraine
    Department of Physical and Colloid Chemistry, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine)

  • Fiseha Tesfaye

    (Johan Gadolin Process Chemistry Centre, Åbo Akademi University, 20500 Turku, Finland)

  • Pavlo Demchenko

    (Department of Inorganic Chemistry, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine)

  • Myroslava Prokhorenko

    (Department of Cartography and Geospatial Modeling, Lviv Polytechnic National University, 79013 Lviv, Ukraine)

  • Nataliya Yarema

    (Department of Cartography and Geospatial Modeling, Lviv Polytechnic National University, 79013 Lviv, Ukraine)

  • Daniel Lindberg

    (Department of Chemical and Metallurgical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland)

  • Oleksandr Reshetnyak

    (Department of Physical and Colloid Chemistry, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine)

  • Leena Hupa

    (Johan Gadolin Process Chemistry Centre, Åbo Akademi University, 20500 Turku, Finland)

Abstract

Equilibrium phase formations below 600 K in the parts Ag 2 Te–FeTe 2 –F 1.12 Te–Ag 2 Te and Ag 8 GeTe 6 –GeTe–FeTe 2 –AgFeTe 2 –Ag 8 GeTe 6 of the Fe–Ag–Ge–Te system were established by the electromotive force (EMF) method. The positions of 3- and 4-phase regions relative to the composition of silver were applied to express the potential reactions involving the AgFeTe 2 , Ag 2 FeTe 2 , and Ag 2 FeGeTe 4 compounds. The equilibrium synthesis of the set of phases was performed inside positive electrodes (PE) of the electrochemical cells: (−)Graphite ‖LE‖ Fast Ag + conducting solid-electrolyte ‖R[Ag + ]‖PE‖ Graphite(+), where LE is the left (negative) electrode, and R[Ag + ] is the buffer region for the diffusion of Ag + ions into the PE. From the observed results, thermodynamic quantities of AgFeTe 2 , Ag 2 FeTe 2 , and Ag 2 FeGeTe 4 were experimentally determined for the first time. The reliability of the division of the Ag 2 Te–FeTe 2 –F 1.12 Te–Ag 2 Te and Ag 8 GeTe 6 –GeTe–FeTe 2 –AgFeTe 2 –Ag 8 GeTe 6 phase regions was confirmed by the calculated thermodynamic quantities of AgFeTe 2 , Ag 2 FeTe 2 , and Ag 2 FeGeTe 4 in equilibrium with phases in the adjacent phase regions. Particularly, the calculated Gibbs energies of Ag 2 FeGeTe 4 in two different adjacent 4-phase regions are consistent, which also indicates that it has stoichiometric composition.

Suggested Citation

  • Mykola Moroz & Fiseha Tesfaye & Pavlo Demchenko & Myroslava Prokhorenko & Nataliya Yarema & Daniel Lindberg & Oleksandr Reshetnyak & Leena Hupa, 2021. "The Equilibrium Phase Formation and Thermodynamic Properties of Functional Tellurides in the Ag–Fe–Ge–Te System," Energies, MDPI, vol. 14(5), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1314-:d:507651
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1314/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1314/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Song Lv & Zuoqin Qian & Dengyun Hu & Xiaoyuan Li & Wei He, 2020. "A Comprehensive Review of Strategies and Approaches for Enhancing the Performance of Thermoelectric Module," Energies, MDPI, vol. 13(12), pages 1-24, June.
    2. Mohamed Amine Zoui & Saïd Bentouba & John G. Stocholm & Mahmoud Bourouis, 2020. "A Review on Thermoelectric Generators: Progress and Applications," Energies, MDPI, vol. 13(14), pages 1-32, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mykola Moroz & Fiseha Tesfaye & Pavlo Demchenko & Emanuela Mastronardo & Oksana Mysina & Myroslava Prokhorenko & Serhiy Prokhorenko & Daniel Lindberg & Oleksandr Reshetnyak & Leena Hupa, 2022. "Experimental Thermodynamic Characterization of the Chalcopyrite-Based Compounds in the Ag–In–Te System for a Potential Thermoelectric Application," Energies, MDPI, vol. 15(21), pages 1-12, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mirosław Neska & Mirosław Mrozek & Marta Żurek-Mortka & Andrzej Majcher, 2021. "Analysis of the Parameters of the Two-Sections Hot Side Heat Exchanger of the Module with Thermoelectric Generators," Energies, MDPI, vol. 14(16), pages 1-15, August.
    2. Kashif Irshad, 2021. "Performance Improvement of Thermoelectric Air Cooler System by Using Variable-Pulse Current for Building Applications," Sustainability, MDPI, vol. 13(17), pages 1-13, August.
    3. Tayfun Uyanık & Emir Ejder & Yasin Arslanoğlu & Yunus Yalman & Yacine Terriche & Chun-Lien Su & Josep M. Guerrero, 2022. "Thermoelectric Generators as an Alternative Energy Source in Shipboard Microgrids," Energies, MDPI, vol. 15(12), pages 1-14, June.
    4. Xiaoyu Liu & Chong Zhao & Hao Guo & Zhongcheng Wang, 2022. "Performance Analysis of Ship Exhaust Gas Temperature Differential Power Generation," Energies, MDPI, vol. 15(11), pages 1-17, May.
    5. Nuttawat Parse & Chakrit Pongkitivanichkul & Supree Pinitsoontorn, 2022. "Machine Learning Approach for Maximizing Thermoelectric Properties of BiCuSeO and Discovering New Doping Element," Energies, MDPI, vol. 15(3), pages 1-13, January.
    6. Jian Li & Qingfeng Song & Ruiheng Liu & Hongliang Dong & Qihao Zhang & Xun Shi & Shengqiang Bai & Lidong Chen, 2022. "Thermoelectric Performance Optimization of n-Type La 3− x Sm x Te 4 /Ni Composites via Sm Doping," Energies, MDPI, vol. 15(7), pages 1-9, March.
    7. Zhe Zhang & Yuqi Zhang & Xiaomei Sui & Wenbin Li & Daochun Xu, 2020. "Performance of Thermoelectric Power-Generation System for Sufficient Recovery and Reuse of Heat Accumulated at Cold Side of TEG with Water-Cooling Energy Exchange Circuit," Energies, MDPI, vol. 13(21), pages 1-18, October.
    8. Sijing Zhu & Zheng Fan & Baoquan Feng & Runze Shi & Zexin Jiang & Ying Peng & Jie Gao & Lei Miao & Kunihito Koumoto, 2022. "Review on Wearable Thermoelectric Generators: From Devices to Applications," Energies, MDPI, vol. 15(9), pages 1-27, May.
    9. Zdenek Machacek & Wojciech Walendziuk & Vojtech Sotola & Zdenek Slanina & Radek Petras & Miroslav Schneider & Zdenek Masny & Adam Idzkowski & Jiri Koziorek, 2021. "An Investigation of Thermoelectric Generators Used as Energy Harvesters in a Water Consumption Meter Application," Energies, MDPI, vol. 14(13), pages 1-22, June.
    10. Jia Yu & Qingshan Zhu & Li Kong & Haoqing Wang & Hongji Zhu, 2020. "Modeling of an Integrated Thermoelectric Generation–Cooling System for Thermoelectric Cooler Waste Heat Recovery," Energies, MDPI, vol. 13(18), pages 1-10, September.
    11. Zoui, Mohamed Amine & Bentouba, Said & Velauthapillai, Dhayalan & Zioui, Nadjet & Bourouis, Mahmoud, 2022. "Design and characterization of a novel finned tubular thermoelectric generator for waste heat recovery," Energy, Elsevier, vol. 253(C).
    12. Krzysztof Sornek, 2021. "Study of Operation of the Thermoelectric Generators Dedicated to Wood-Fired Stoves," Energies, MDPI, vol. 14(19), pages 1-20, October.
    13. Daniel Sanin-Villa & Oscar Danilo Montoya & Luis Fernando Grisales-Noreña, 2023. "Material Property Characterization and Parameter Estimation of Thermoelectric Generator by Using a Master–Slave Strategy Based on Metaheuristics Techniques," Mathematics, MDPI, vol. 11(6), pages 1-19, March.
    14. Mohammed A. Qasim & Vladimir I. Velkin & Sergey E. Shcheklein, 2022. "The Experimental Investigation of a New Panel Design for Thermoelectric Power Generation to Maximize Output Power Using Solar Radiation," Energies, MDPI, vol. 15(9), pages 1-15, April.
    15. Sergii Mamykin & Roni Z. Shneck & Bohdan Dzundza & Feng Gao & Zinovi Dashevsky, 2023. "A Novel Solar System of Electricity and Heat," Energies, MDPI, vol. 16(7), pages 1-11, March.
    16. Hegazy Rezk & Mohammed Mazen Alhato & Mujahed Al-Dhaifallah & Soufiene Bouallègue, 2021. "A Sine Cosine Algorithm-Based Fractional MPPT for Thermoelectric Generation System," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    17. Yuemei Li & Zhiguo Zhang & Haojie Zhang & Xueliang Gu & Shaolong Chang, 2022. "A Novel Forked-Finger Electrode-Structured Thermoelectric Module with High Output Power," Energies, MDPI, vol. 15(12), pages 1-13, June.
    18. Olukayode L. Ayodele & Doudou N. Luta & Mohammed T. Kahn, 2023. "A Micro-Nuclear Power Generator for Space Missions," Energies, MDPI, vol. 16(11), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1314-:d:507651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.