IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2695-d1096439.html
   My bibliography  Save this article

Available Kinetic Energy Sources on the Human Body during Sports Activities: A Numerical Approach Based on Accelerometers for Cantilevered Piezoelectric Harvesters

Author

Listed:
  • Damien Hoareau

    (Department of Mechatronics, École Normale Supérieure de Rennes, 35000 Rennes, France
    Laboratoire SATIE, CNRS UMR 8029, École Normale Supérieure de Rennes, 35170 Bruz, France)

  • Gurvan Jodin

    (Department of Mechatronics, École Normale Supérieure de Rennes, 35000 Rennes, France
    Laboratoire SATIE, CNRS UMR 8029, École Normale Supérieure de Rennes, 35170 Bruz, France)

  • Abdo-rahmane Anas Laaraibi

    (Department of Mechatronics, École Normale Supérieure de Rennes, 35000 Rennes, France
    Laboratoire SATIE, CNRS UMR 8029, École Normale Supérieure de Rennes, 35170 Bruz, France
    Laboratoire IETR, Université de Rennes 1, 35000 Rennes, France)

  • Jacques Prioux

    (Laboratoire M2S, Université de Rennes 2, 35000 Rennes, France
    Department of Sport Science and Physical Education, École Normale Supérieure de Rennes, 35000 Rennes, France)

  • Florence Razan

    (Department of Mechatronics, École Normale Supérieure de Rennes, 35000 Rennes, France
    Laboratoire SATIE, CNRS UMR 8029, École Normale Supérieure de Rennes, 35170 Bruz, France
    Laboratoire IETR, Université de Rennes 1, 35000 Rennes, France)

Abstract

Physical activity involves movements, which can be considered sources of kinetic energy, that are expected to be important during sports activities. Several transducers can transform this energy into electrical energy. Piezoelectric generators are widely used, and several applications highlight their relevance. However, the generated output power is location dependent, and the analysis of the placement of this kind of generator can be challenging. In order to assess the availability of kinetic energy sources, an acceleration data analysis method is presented. Temporal and harvester model-based studies, using data from 17 inertial measurement units (IMUs) located across the whole human body, were conducted. The results show that piezoelectric cantilever-beam harvesters can be very sensitive to impacts. Extremity segments, such as the feet or hands, can be considered as good energy sources. The most relevant features are proposed as criteria to easily evaluate the harvestable energy sources.

Suggested Citation

  • Damien Hoareau & Gurvan Jodin & Abdo-rahmane Anas Laaraibi & Jacques Prioux & Florence Razan, 2023. "Available Kinetic Energy Sources on the Human Body during Sports Activities: A Numerical Approach Based on Accelerometers for Cantilevered Piezoelectric Harvesters," Energies, MDPI, vol. 16(6), pages 1-20, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2695-:d:1096439
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2695/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2695/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hassan Elahi & Marco Eugeni & Paolo Gaudenzi, 2018. "A Review on Mechanisms for Piezoelectric-Based Energy Harvesters," Energies, MDPI, vol. 11(7), pages 1-35, July.
    2. Ju, Suna & Ji, Chang-Hyeon, 2018. "Impact-based piezoelectric vibration energy harvester," Applied Energy, Elsevier, vol. 214(C), pages 139-151.
    3. Alberto Ranavolo & Francesco Draicchio & Tiwana Varrecchia & Alessio Silvetti & Sergio Iavicoli, 2018. "Wearable Monitoring Devices for Biomechanical Risk Assessment at Work: Current Status and Future Challenges—A Systematic Review," IJERPH, MDPI, vol. 15(9), pages 1-26, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khazaee, Majid & Huber, John E. & Rosendahl, Lasse & Rezania, Alireza, 2021. "The investigation of viscous and structural damping for piezoelectric energy harvesters using only time-domain voltage measurements," Applied Energy, Elsevier, vol. 285(C).
    2. Zhao, Dong & Liu, Ying, 2020. "A prototype for light-electric harvester based on light sensitive liquid crystal elastomer cantilever," Energy, Elsevier, vol. 198(C).
    3. Xiaobiao Shan & Haigang Tian & Han Cao & Tao Xie, 2020. "Enhancing Performance of a Piezoelectric Energy Harvester System for Concurrent Flutter and Vortex-Induced Vibration," Energies, MDPI, vol. 13(12), pages 1-19, June.
    4. Bartosz Kawa & Krzysztof Śliwa & Vincent Ch. Lee & Qiongfeng Shi & Rafał Walczak, 2020. "Inkjet 3D Printed MEMS Vibrational Electromagnetic Energy Harvester," Energies, MDPI, vol. 13(11), pages 1-10, June.
    5. Wang, Shuyun & Yang, Zemeng & Kan, Junwu & Chen, Song & Chai, Chaohui & Zhang, Zhonghua, 2021. "Design and characterization of an amplitude-limiting rotational piezoelectric energy harvester excited by a radially dragged magnetic force," Renewable Energy, Elsevier, vol. 177(C), pages 1382-1393.
    6. Maria Joseph Raj, Nirmal Prashanth & Alluri, Nagamalleswara Rao & Vivekananthan, Venkateswaran & Chandrasekhar, Arunkumar & Khandelwal, Gaurav & Kim, Sang-Jae, 2018. "Sustainable yarn type-piezoelectric energy harvester as an eco-friendly, cost-effective battery-free breath sensor," Applied Energy, Elsevier, vol. 228(C), pages 1767-1776.
    7. Aldawood, Ghufran & Nguyen, Hieu Tri & Bardaweel, Hamzeh, 2019. "High power density spring-assisted nonlinear electromagnetic vibration energy harvester for low base-accelerations," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Jiatong Chen & Bin Bao & Jinlong Liu & Yufei Wu & Quan Wang, 2022. "Pendulum Energy Harvesters: A Review," Energies, MDPI, vol. 15(22), pages 1-26, November.
    9. Bouma, A. & Le, E. & Vasconcellos, R. & Abdelkefi, A., 2022. "Effective design and characterization of flutter-based piezoelectric energy harvesters with discontinuous nonlinearities," Energy, Elsevier, vol. 238(PA).
    10. Ming He & Sheng Wang & Xiang Zhong & Mingjie Guan, 2019. "Study of a Piezoelectric Energy Harvesting Floor Structure with Force Amplification Mechanism," Energies, MDPI, vol. 12(18), pages 1-10, September.
    11. Andrzej Michalski & Zbigniew Watral, 2021. "Problems of Powering End Devices in Wireless Networks of the Internet of Things," Energies, MDPI, vol. 14(9), pages 1-15, April.
    12. Gao, Mingyuan & Wang, Yuan & Wang, Yifeng & Wang, Ping, 2018. "Experimental investigation of non-linear multi-stable electromagnetic-induction energy harvesting mechanism by magnetic levitation oscillation," Applied Energy, Elsevier, vol. 220(C), pages 856-875.
    13. He, Jian & Fan, Xueming & Mu, Jiliang & Wang, Chao & Qian, Jichao & Li, Xiucheng & Hou, Xiaojuan & Geng, Wenping & Wang, Xiangdong & Chou, Xiujian, 2020. "3D full-space triboelectric-electromagnetic hybrid nanogenerator for high-efficient mechanical energy harvesting in vibration system," Energy, Elsevier, vol. 194(C).
    14. Luo, Anxin & Zhang, Yulong & Dai, Xiangtian & Wang, Yifan & Xu, Weihan & Lu, Yan & Wang, Min & Fan, Kangqi & Wang, Fei, 2020. "An inertial rotary energy harvester for vibrations at ultra-low frequency with high energy conversion efficiency," Applied Energy, Elsevier, vol. 279(C).
    15. Tri Nguyen, Hieu & Genov, Dentcho A. & Bardaweel, Hamzeh, 2020. "Vibration energy harvesting using magnetic spring based nonlinear oscillators: Design strategies and insights," Applied Energy, Elsevier, vol. 269(C).
    16. Kim, Jae Woo & Salauddin, Md & Cho, Hyunok & Rasel, M. Salauddin & Park, Jae Yeong, 2019. "Electromagnetic energy harvester based on a finger trigger rotational gear module and an array of disc Halbach magnets," Applied Energy, Elsevier, vol. 250(C), pages 776-785.
    17. Ryszard Kacprzyk & Agnieszka Mirkowska, 2020. "Bubble Electret-Elastomer Piezoelectric Transducer," Energies, MDPI, vol. 13(11), pages 1-11, June.
    18. Hamlehdar, Maryam & Kasaeian, Alibakhsh & Safaei, Mohammad Reza, 2019. "Energy harvesting from fluid flow using piezoelectrics: A critical review," Renewable Energy, Elsevier, vol. 143(C), pages 1826-1838.
    19. Watson, Simon & Moro, Alberto & Reis, Vera & Baniotopoulos, Charalampos & Barth, Stephan & Bartoli, Gianni & Bauer, Florian & Boelman, Elisa & Bosse, Dennis & Cherubini, Antonello & Croce, Alessandro , 2019. "Future emerging technologies in the wind power sector: A European perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    20. He, Xianming & Wen, Quan & Lu, Zhuang & Shang, Zhengguo & Wen, Zhiyu, 2018. "A micro-electromechanical systems based vibration energy harvester with aluminum nitride piezoelectric thin film deposited by pulsed direct-current magnetron sputtering," Applied Energy, Elsevier, vol. 228(C), pages 881-890.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2695-:d:1096439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.