IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1849-d1067185.html
   My bibliography  Save this article

Experimental Research on the Effect of Particle Parameters on Dynamic Stall Characteristics of the Wind Turbine Airfoil

Author

Listed:
  • Deshun Li

    (College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China)

  • Ting He

    (College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China)

  • Qing Wang

    (College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China)

Abstract

The frequent appearance of sandy and dusty weather in Northwest China impacts the wind turbine. Meanwhile, the non-constant phenomena, dynamic stall speed during the wind turbine operation, will lead to large load fluctuations and unsafe operation. However, few studies have been conducted at home and abroad on the effect of particle parameters on the dynamic stall of airfoils. This paper investigates the impact of particle parameters on the airfoil dynamic stall through numerical simulation of the coupling between the continuous phase and discrete phase by using the SST k-ω turbulence model for a two-dimensional NACA 0012 airfoil. The effect of particle parameters on the airfoil dynamic stall aerodynamic performance, the impact of the flow field around the airfoil, and the particles motion were studied, respectively. The investigation shows a reduction in the aerodynamic performance of the airfoil, due to the addition of particles. The effect is more prominent under a large angle of attack and less under a small angle of attack. When the angle of attack increases, the loss rate of lift coefficient in the windy and sandy environment gradually decreases, while irregular fluctuations emerge when the angle of attack decreases, and the overall rate of change increases more significantly, compared to the stage of the increasing angle of attack. For the particle diameter under 50 μm, the larger the particle diameter, the more significant the change of lift coefficient becomes, as well as the larger the vortex volume near the airfoil’s leading edge, and a large number of particles gather at the suction surface of the airfoil. For the particle diameter of 50 μm, the lift coefficient decreases at any angle of attack of the airfoil movement to the oscillation cycle, the vortex volume decreases, and a large number of particles gather at the pressure surface of the airfoil. However, for particle diameters above 50 μm, the lift coefficient gets reduced, followed by a decrease in the vortex volume near the airfoil leading edge with the increase of particle diameter, so that plenty of particles gather on the pressure surface of that airfoil. At the stage of increasing the airfoil angle of attack, with the increase of particle concentration, there is a gradual decrease of the peak lift coefficient and stall angle of attack of the airfoil, as well as a corresponding decrease of the drag coefficient divergence angle of attack and peak value. In contrast, when the airfoil angle of attack is decreased, the airflow reattachment process obviously lags behind that of the clean air. As the particle concentration increases, the airfoil separation point occurs earlier, and the higher the concentration, the earlier the separation point. The erosion maximum airfoil erosion rate increases with the particle concentration.

Suggested Citation

  • Deshun Li & Ting He & Qing Wang, 2023. "Experimental Research on the Effect of Particle Parameters on Dynamic Stall Characteristics of the Wind Turbine Airfoil," Energies, MDPI, vol. 16(4), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1849-:d:1067185
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1849/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1849/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Chengyong & Qiu, Yingning & Wang, Tongguang, 2021. "Dynamic stall of the wind turbine airfoil and blade undergoing pitch oscillations: A comparative study," Energy, Elsevier, vol. 222(C).
    2. Gharali, Kobra & Johnson, David A., 2012. "Numerical modeling of an S809 airfoil under dynamic stall, erosion and high reduced frequencies," Applied Energy, Elsevier, vol. 93(C), pages 45-52.
    3. Han, Woobeom & Kim, Jonghwa & Kim, Bumsuk, 2018. "Effects of contamination and erosion at the leading edge of blade tip airfoils on the annual energy production of wind turbines," Renewable Energy, Elsevier, vol. 115(C), pages 817-823.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Chengyong & Feng, Yi & Shen, Xiang & Dang, Zhigao & Chen, Jie & Qiu, Yingning & Feng, Yanhui & Wang, Tongguang, 2023. "Effects of the height and chordwise installation of the vane-type vortex generators on the unsteady aerodynamics of a wind turbine airfoil undergoing dynamic stall," Energy, Elsevier, vol. 266(C).
    2. Wekesa, David Wafula & Wang, Cong & Wei, Yingjie & Danao, Louis Angelo M., 2017. "Analytical and numerical investigation of unsteady wind for enhanced energy capture in a fluctuating free-stream," Energy, Elsevier, vol. 121(C), pages 854-864.
    3. Tariq Ullah & Krzysztof Sobczak & Grzegorz Liśkiewicz & Amjid Khan, 2022. "Two-Dimensional URANS Numerical Investigation of Critical Parameters on a Pitch Oscillating VAWT Airfoil under Dynamic Stall," Energies, MDPI, vol. 15(15), pages 1-19, August.
    4. Hasager, C. & Vejen, F. & Bech, J.I. & Skrzypiński, W.R. & Tilg, A.-M. & Nielsen, M., 2020. "Assessment of the rain and wind climate with focus on wind turbine blade leading edge erosion rate and expected lifetime in Danish Seas," Renewable Energy, Elsevier, vol. 149(C), pages 91-102.
    5. Huang, Haoda & Liu, Qingsong & Yue, Minnan & Miao, Weipao & Wang, Peilin & Li, Chun, 2023. "Fully coupled aero-hydrodynamic analysis of a biomimetic fractal semi-submersible floating offshore wind turbine under wind-wave excitation conditions," Renewable Energy, Elsevier, vol. 203(C), pages 280-300.
    6. Liu, Jian & Zhu, Wenqing & Xiao, Zhixiang & Sun, Haisheng & Huang, Yong & Liu, Zhitao, 2018. "DDES with adaptive coefficient for stalled flows past a wind turbine airfoil," Energy, Elsevier, vol. 161(C), pages 846-858.
    7. Mohammad K. Najjar & Eduardo Linhares Qualharini & Ahmed W. A. Hammad & Dieter Boer & Assed Haddad, 2019. "Framework for a Systematic Parametric Analysis to Maximize Energy Output of PV Modules Using an Experimental Design," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
    8. Tao Luo & De Tian & Ruoyu Wang & Caicai Liao, 2018. "Stochastic Dynamic Response Analysis of a 10 MW Tension Leg Platform Floating Horizontal Axis Wind Turbine," Energies, MDPI, vol. 11(12), pages 1-24, November.
    9. Zhu, Chengyong & Chen, Jie & Qiu, Yingning & Wang, Tongguang, 2021. "Numerical investigation into rotational augmentation with passive vortex generators on the NREL Phase VI blade," Energy, Elsevier, vol. 223(C).
    10. Xiaohang Wang & Zhenbo Tang & Na Yan & Guojun Zhu, 2022. "Effect of Different Types of Erosion on the Aerodynamic Performance of Wind Turbine Airfoils," Sustainability, MDPI, vol. 14(19), pages 1-13, September.
    11. Eleni Douvi & Dimitra Douvi, 2023. "Aerodynamic Characteristics of Wind Turbines Operating under Hazard Environmental Conditions: A Review," Energies, MDPI, vol. 16(22), pages 1-43, November.
    12. Li, Qing'an & Kamada, Yasunari & Maeda, Takao & Murata, Junsuke & Nishida, Yusuke, 2016. "Effect of turbulent inflows on airfoil performance for a Horizontal Axis Wind Turbine at low Reynolds numbers (part I: Static pressure measurement)," Energy, Elsevier, vol. 111(C), pages 701-712.
    13. Abutunis, Abdulaziz & Hussein, Rafid & Chandrashekhara, K., 2019. "A neural network approach to enhance blade element momentum theory performance for horizontal axis hydrokinetic turbine application," Renewable Energy, Elsevier, vol. 136(C), pages 1281-1293.
    14. Herring, Robbie & Dyer, Kirsten & Martin, Ffion & Ward, Carwyn, 2019. "The increasing importance of leading edge erosion and a review of existing protection solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    15. Mikkel Schou Nielsen & Ivan Nikolov & Emil Krog Kruse & Jørgen Garnæs & Claus Brøndgaard Madsen, 2020. "High-Resolution Structure-from-Motion for Quantitative Measurement of Leading-Edge Roughness," Energies, MDPI, vol. 13(15), pages 1-17, July.
    16. Dai, Juchuan & Yang, Xin & Hu, Wei & Wen, Li & Tan, Yayi, 2018. "Effect investigation of yaw on wind turbine performance based on SCADA data," Energy, Elsevier, vol. 149(C), pages 684-696.
    17. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    18. Papi, Francesco & Balduzzi, Francesco & Ferrara, Giovanni & Bianchini, Alessandro, 2021. "Uncertainty quantification on the effects of rain-induced erosion on annual energy production and performance of a Multi-MW wind turbine," Renewable Energy, Elsevier, vol. 165(P1), pages 701-715.
    19. Chengyong Zhu & Tongguang Wang & Jianghai Wu, 2019. "Numerical Investigation of Passive Vortex Generators on a Wind Turbine Airfoil Undergoing Pitch Oscillations," Energies, MDPI, vol. 12(4), pages 1-19, February.
    20. Aiman Abbas Mahar & Nayyar Hussain Mirjat & Bhawani S. Chowdhry & Laveet Kumar & Quynh T. Tran & Gaetano Zizzo, 2023. "Condition Assessment and Analysis of Bearing of Doubly Fed Wind Turbines Using Machine Learning Technique," Energies, MDPI, vol. 16(5), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1849-:d:1067185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.