IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1508-d1056533.html
   My bibliography  Save this article

Estimating the Dominant Life Phase Concerning the Effects of Battery Degradation on CO 2 Emissions by Repetitive Cycle Applications: Case Study of an Industrial Battery System Installed in an Electric Bus

Author

Listed:
  • Reiko Takahashi

    (Energy Systems Research and Development Center, Toshiba Energy Systems & Solutions Corporation, 72-34, Horikawa-cho, Saiwai-ku, Kawasaki 212-8585, Japan)

  • Koji Negishi

    (Energy Systems Research and Development Center, Toshiba Energy Systems & Solutions Corporation, 72-34, Horikawa-cho, Saiwai-ku, Kawasaki 212-8585, Japan)

  • Hideki Noda

    (Infrastructure Systems Research and Development Center, Toshiba Infrastructure Systems & Solutions Corporation, 72-34, Horikawa-cho, Saiwai-ku, Kawasaki 212-8585, Japan)

  • Mami Mizutani

    (Infrastructure Systems Research and Development Center, Toshiba Infrastructure Systems & Solutions Corporation, 72-34, Horikawa-cho, Saiwai-ku, Kawasaki 212-8585, Japan)

Abstract

Many studies have evaluated CO 2 emission from batteries. However, the impact of Li-ion battery (LiB) degradation on the CO 2 emissions from the material through operation phases has not been sufficiently examined. This study aims to clarify the dominant CO 2 emission phase and the impact of the degradation of general industrial LiBs from repetitive cycle applications. We developed a model common to general LiB composition and calculated CO 2 emissions by the LCA method using the IDEA database. Our model simplifies the degradation process, including capacity decrease and internal resistance increase. We used it in a sensitivity analysis of the carbon intensity of electricity charged to a LiB. The loss mechanism was determined by experimental data for an electric bus with an industrial LiB. The results illustrate that the carbon intensity of electricity affects CO 2 emissions dominance, the operation phase for mix (71.3%), and the material phase for renewables (70.9%), and that battery degradation over six years increases the total amount of CO 2 emissions by 11.8% for mix and 3.9% for renewables equivalent. Although there are limitations regarding the assumed conditions, the present results will contribute to building a method for monitoring emissions and to standardizing degradation calculations.

Suggested Citation

  • Reiko Takahashi & Koji Negishi & Hideki Noda & Mami Mizutani, 2023. "Estimating the Dominant Life Phase Concerning the Effects of Battery Degradation on CO 2 Emissions by Repetitive Cycle Applications: Case Study of an Industrial Battery System Installed in an Electric," Energies, MDPI, vol. 16(3), pages 1, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1508-:d:1056533
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1508/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1508/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Piotr Wróblewski & Wojciech Drożdż & Wojciech Lewicki & Paweł Miązek, 2021. "Methodology for Assessing the Impact of Aperiodic Phenomena on the Energy Balance of Propulsion Engines in Vehicle Electromobility Systems for Given Areas," Energies, MDPI, vol. 14(8), pages 1-24, April.
    2. Sadik-Zada, Elkhan Richard & Gatto, Andrea & Scharfenstein, Manuel, 2023. "Sustainable management of lithium and green hydrogen and long-run perspectives of electromobility," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    3. Andrea Temporelli & Maria Leonor Carvalho & Pierpaolo Girardi, 2020. "Life Cycle Assessment of Electric Vehicle Batteries: An Overview of Recent Literature," Energies, MDPI, vol. 13(11), pages 1-13, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    2. Mattia Rapa & Laura Gobbi & Roberto Ruggieri, 2020. "Environmental and Economic Sustainability of Electric Vehicles: Life Cycle Assessment and Life Cycle Costing Evaluation of Electricity Sources," Energies, MDPI, vol. 13(23), pages 1-16, November.
    3. Mariusz Niekurzak & Jerzy Mikulik, 2021. "Modeling of Energy Consumption and Reduction of Pollutant Emissions in a Walking Beam Furnace Using the Expert Method—Case Study," Energies, MDPI, vol. 14(23), pages 1-22, December.
    4. Claudiu Vasile Kifor & Niculina Alexandra Grigore, 2023. "Circular Economy Approaches for Electrical and Conventional Vehicles," Sustainability, MDPI, vol. 15(7), pages 1-28, April.
    5. Briac Baudais & Hamid Ben Ahmed & Gurvan Jodin & Nicolas Degrenne & Stéphane Lefebvre, 2023. "Life Cycle Assessment of a 150 kW Electronic Power Inverter," Energies, MDPI, vol. 16(5), pages 1-18, February.
    6. Mariusz Niekurzak, 2021. "Determining the Unit Values of the Allocation of Greenhouse Gas Emissions for the Production of Biofuels in the Life Cycle," Energies, MDPI, vol. 14(24), pages 1-18, December.
    7. David Borge-Diez & Pedro Miguel Ortega-Cabezas & Antonio Colmenar-Santos & Jorge Juan Blanes-Peiró, 2021. "Contribution of Driving Efficiency to Vehicle-to-Building," Energies, MDPI, vol. 14(12), pages 1-30, June.
    8. Mariusz Niekurzak, 2021. "The Potential of Using Renewable Energy Sources in Poland Taking into Account the Economic and Ecological Conditions," Energies, MDPI, vol. 14(22), pages 1-17, November.
    9. Marcin Rabe & Agnieszka Jakubowska & Veselin Draskovic & Katarzyna Widera & Tomasz Pudło & Agnieszka Łopatka & Łukasz Kuźmiński, 2022. "Comparative Analysis on the Performance and Exhaust Gas Emission of Cars with Spark-Ignition Engines," Energies, MDPI, vol. 15(17), pages 1-18, August.
    10. Maria Cieśla & Elżbieta Macioszek, 2022. "The Perspective Projects Promoting Sustainable Mobility by Active Travel to School on the Example of the Southern Poland Region," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    11. Weiyi Lin & Han Zhao & Bingzhan Zhang & Ye Wang & Yan Xiao & Kang Xu & Rui Zhao, 2022. "Predictive Energy Management Strategy for Range-Extended Electric Vehicles Based on ITS Information and Start–Stop Optimization with Vehicle Velocity Forecast," Energies, MDPI, vol. 15(20), pages 1-27, October.
    12. Nora Schelte & Semih Severengiz & Jaron Schünemann & Sebastian Finke & Oskar Bauer & Matthias Metzen, 2021. "Life Cycle Assessment on Electric Moped Scooter Sharing," Sustainability, MDPI, vol. 13(15), pages 1-20, July.
    13. Gábor Horváth & Attila Bai & Sándor Szegedi & István Lázár & Csongor Máthé & László Huzsvai & Máté Zakar & Zoltán Gabnai & Tamás Tóth, 2023. "A Comprehensive Review of the Distinctive Tendencies of the Diffusion of E-Mobility in Central Europe," Energies, MDPI, vol. 16(14), pages 1-29, July.
    14. Muhammad Rizalul Wahid & Bentang Arief Budiman & Endra Joelianto & Muhammad Aziz, 2021. "A Review on Drive Train Technologies for Passenger Electric Vehicles," Energies, MDPI, vol. 14(20), pages 1-24, October.
    15. Surender Reddy Salkuti, 2023. "Advanced Technologies for Energy Storage and Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-7, February.
    16. Eimantas Neniškis & Arvydas Galinis & Egidijus Norvaiša, 2021. "Improving Transport Modeling in MESSAGE Energy Planning Model: Vehicle Age Distributions," Energies, MDPI, vol. 14(21), pages 1-16, November.
    17. Sadik-Zada, Elkhan Richard & Santibanez Gonzalez, Ernesto DR & Gatto, Andrea & Althaus, Tomasz & Quliyev, Fuad, 2023. "Pathways to the hydrogen mobility futures in German public transportation: A scenario analysis," Renewable Energy, Elsevier, vol. 205(C), pages 384-392.
    18. Maria Leonor Carvalho & Andrea Temporelli & Pierpaolo Girardi, 2021. "Life Cycle Assessment of Stationary Storage Systems within the Italian Electric Network," Energies, MDPI, vol. 14(8), pages 1-19, April.
    19. Elżbieta Macioszek & Maria Cieśla & Anna Granà, 2023. "Future Development of an Energy-Efficient Electric Scooter Sharing System Based on a Stakeholder Analysis Method," Energies, MDPI, vol. 16(1), pages 1-24, January.
    20. Mostafa Shibl & Loay Ismail & Ahmed Massoud, 2021. "Electric Vehicles Charging Management Using Machine Learning Considering Fast Charging and Vehicle-to-Grid Operation," Energies, MDPI, vol. 14(19), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1508-:d:1056533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.