IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p918-d1034815.html
   My bibliography  Save this article

Research on Model Calibration Method of Chiller Plants Based on Error Reverse Correction with Limited Data

Author

Listed:
  • Cheng Zhen

    (School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China)

  • Jide Niu

    (School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
    Tianjin Key Laboratory of Building Environment and Energy, Tianjin 300072, China)

  • Zhe Tian

    (School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
    Tianjin Key Laboratory of Building Environment and Energy, Tianjin 300072, China)

Abstract

Model-based optimization is an important means by which to analyze the energy-saving potential of chiller plants. To obtain reliable energy-saving results, model calibration is essential, which strongly depends on operating data. However, sufficient data cannot always be satisfied in reality. To improve the prediction accuracy of the model with limited data, a model calibration method based on error reverse correction was investigated. A traditional optimization-based calibration method was first used for preliminary model calibration to obtain simulation data and simulation errors. Then, the sources of the simulation errors were analyzed to determine the distribution characteristics of the corresponding operating conditions of the model. Finally, the performance of the model was reversely corrected by adding a correction term to the original model. The proposed calibration method was tested on a chiller plant in Xiamen, China. The results showed that the proposed calibration method improved prediction accuracy by 2.61% (the coefficient of variation of the root mean square error (CV (RMSE)) was reduced from 3.96% to 1.35%) compared to the traditional method. The maximum mean bias error (MBE) for monthly chiller energy consumption was 2.66% with the proposed calibration method, while it was 10.42% with the traditional method. Overall, in scenarios with limited data, the proposed calibration method can effectively improve the accuracy of simulation results.

Suggested Citation

  • Cheng Zhen & Jide Niu & Zhe Tian, 2023. "Research on Model Calibration Method of Chiller Plants Based on Error Reverse Correction with Limited Data," Energies, MDPI, vol. 16(2), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:918-:d:1034815
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/918/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/918/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huang, Sen & Zuo, Wangda & Sohn, Michael D., 2016. "Amelioration of the cooling load based chiller sequencing control," Applied Energy, Elsevier, vol. 168(C), pages 204-215.
    2. Kim, Yang-Seon & Heidarinejad, Mohammad & Dahlhausen, Matthew & Srebric, Jelena, 2017. "Building energy model calibration with schedules derived from electricity use data," Applied Energy, Elsevier, vol. 190(C), pages 997-1007.
    3. Beckman, William A. & Broman, Lars & Fiksel, Alex & Klein, Sanford A. & Lindberg, Eva & Schuler, Mattias & Thornton, Jeff, 1994. "TRNSYS The most complete solar energy system modeling and simulation software," Renewable Energy, Elsevier, vol. 5(1), pages 486-488.
    4. Germán Ramos Ruiz & Carlos Fernández Bandera, 2017. "Validation of Calibrated Energy Models: Common Errors," Energies, MDPI, vol. 10(10), pages 1-19, October.
    5. Fan, Chengliang & Hinkelman, Kathryn & Fu, Yangyang & Zuo, Wangda & Huang, Sen & Shi, Chengnan & Mamaghani, Nasim & Faulkner, Cary & Zhou, Xiaoqing, 2021. "Open-source Modelica models for the control performance simulation of chiller plants with water-side economizer," Applied Energy, Elsevier, vol. 299(C).
    6. Hinkelman, Kathryn & Wang, Jing & Zuo, Wangda & Gautier, Antoine & Wetter, Michael & Fan, Chengliang & Long, Nicholas, 2022. "Modelica-based modeling and simulation of district cooling systems: A case study," Applied Energy, Elsevier, vol. 311(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hinkelman, Kathryn & Wang, Jing & Zuo, Wangda & Gautier, Antoine & Wetter, Michael & Fan, Chengliang & Long, Nicholas, 2022. "Modelica-based modeling and simulation of district cooling systems: A case study," Applied Energy, Elsevier, vol. 311(C).
    2. Lazaros Aresti & Paul Christodoulides & Gregoris P. Panayiotou & Georgios Florides, 2020. "The Potential of Utilizing Buildings’ Foundations as Thermal Energy Storage (TES) Units from Solar Plate Collectors," Energies, MDPI, vol. 13(11), pages 1-14, May.
    3. Catrini, P. & Panno, D. & Cardona, F. & Piacentino, A., 2020. "Characterization of cooling loads in the wine industry and novel seasonal indicator for reliable assessment of energy saving through retrofit of chillers," Applied Energy, Elsevier, vol. 266(C).
    4. Tomasz Szul & Krzysztof Nęcka & Stanisław Lis, 2021. "Application of the Takagi-Sugeno Fuzzy Modeling to Forecast Energy Efficiency in Real Buildings Undergoing Thermal Improvement," Energies, MDPI, vol. 14(7), pages 1-16, March.
    5. Ana Picallo-Perez & Jose Maria Sala-Lizarraga, 2021. "Design and Operation of a Polygeneration System in Spanish Climate Buildings under an Exergetic Perspective," Energies, MDPI, vol. 14(22), pages 1-21, November.
    6. Suzana Domjan & Sašo Medved & Boštjan Černe & Ciril Arkar, 2019. "Fast Modelling of nZEB Metrics of Office Buildings Built with Advanced Glass and BIPV Facade Structures," Energies, MDPI, vol. 12(16), pages 1-18, August.
    7. Joanna Piotrowska-Woroniak & Tomasz Szul, 2022. "Application of a Model Based on Rough Set Theory (RST) to Estimate the Energy Efficiency of Public Buildings," Energies, MDPI, vol. 15(23), pages 1-13, November.
    8. Zhu, Xu & Zhang, Shuai & Jin, Xinqiao & Du, Zhimin, 2020. "Deep learning based reference model for operational risk evaluation of screw chillers for energy efficiency," Energy, Elsevier, vol. 213(C).
    9. Thangavelu, Sundar Raj & Myat, Aung & Khambadkone, Ashwin, 2017. "Energy optimization methodology of multi-chiller plant in commercial buildings," Energy, Elsevier, vol. 123(C), pages 64-76.
    10. Sanjin Gumbarević & Ivana Burcar Dunović & Bojan Milovanović & Mergim Gaši, 2020. "Method for Building Information Modeling Supported Project Control of Nearly Zero-Energy Building Delivery," Energies, MDPI, vol. 13(20), pages 1-21, October.
    11. David Bienvenido-Huertas, 2020. "Analysis of the Impact of the Use Profile of HVAC Systems Established by the Spanish Standard to Assess Residential Building Energy Performance," Sustainability, MDPI, vol. 12(17), pages 1-19, September.
    12. Pasichnyi, Oleksii & Wallin, Jörgen & Kordas, Olga, 2019. "Data-driven building archetypes for urban building energy modelling," Energy, Elsevier, vol. 181(C), pages 360-377.
    13. Hossein Bakhtiari & Jan Akander & Mathias Cehlin & Abolfazl Hayati, 2020. "On the Performance of Night Ventilation in a Historic Office Building in Nordic Climate," Energies, MDPI, vol. 13(16), pages 1-26, August.
    14. Hanan S.S. Ibrahim & Ahmed Z. Khan & Waqas Ahmed Mahar & Shady Attia & Yehya Serag, 2021. "Assessment of Passive Retrofitting Scenarios in Heritage Residential Buildings in Hot, Dry Climates," Energies, MDPI, vol. 14(11), pages 1-27, June.
    15. Soo-Jin Lee & You-Jeong Kim & Hye-Sun Jin & Sung-Im Kim & Soo-Yeon Ha & Seung-Yeong Song, 2019. "Residential End-Use Energy Estimation Models in Korean Apartment Units through Multiple Regression Analysis," Energies, MDPI, vol. 12(12), pages 1-18, June.
    16. Olivieri, L. & Caamaño-Martín, E. & Moralejo-Vázquez, F.J. & Martín-Chivelet, N. & Olivieri, F. & Neila-Gonzalez, F.J., 2014. "Energy saving potential of semi-transparent photovoltaic elements for building integration," Energy, Elsevier, vol. 76(C), pages 572-583.
    17. Ciulla, G. & D'Amico, A., 2019. "Building energy performance forecasting: A multiple linear regression approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    18. Hafiz Abdul Muqeet & Hafiz Mudassir Munir & Haseeb Javed & Muhammad Shahzad & Mohsin Jamil & Josep M. Guerrero, 2021. "An Energy Management System of Campus Microgrids: State-of-the-Art and Future Challenges," Energies, MDPI, vol. 14(20), pages 1-34, October.
    19. Carlos Fernández Bandera & Germán Ramos Ruiz, 2017. "Towards a New Generation of Building Envelope Calibration," Energies, MDPI, vol. 10(12), pages 1-19, December.
    20. Xiao, Tianqi & You, Fengqi, 2023. "Building thermal modeling and model predictive control with physically consistent deep learning for decarbonization and energy optimization," Applied Energy, Elsevier, vol. 342(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:918-:d:1034815. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.