IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p909-d1034561.html
   My bibliography  Save this article

Aerodynamic Performance Enhancement of an Axisymmetric Deflector Applied to Savonius Wind Turbine Using Novel Transient 3D CFD Simulation Techniques

Author

Listed:
  • Hady Aboujaoude

    (MATIM, Université de Reims Champagne-Ardenne, 51100 Reims, France)

  • Fabien Bogard

    (MATIM, Université de Reims Champagne-Ardenne, 51100 Reims, France
    Pôle de Recherche Châlonnais, Université de Reims Champagne-Ardenne, 51000 Châlons en Champagne, France)

  • Fabien Beaumont

    (MATIM, Université de Reims Champagne-Ardenne, 51100 Reims, France)

  • Sébastien Murer

    (MATIM, Université de Reims Champagne-Ardenne, 51100 Reims, France)

  • Guillaume Polidori

    (MATIM, Université de Reims Champagne-Ardenne, 51100 Reims, France)

Abstract

Many recent studies show that the performance of Savonius turbines can be considerably increased by using wind deflectors. Axisymmetric deflectors are particularly interesting; they concentrate the wind flow in all directions. This study aims to aerodynamically optimize the truncated cone deflector shape through transient 3D CFD simulations using sliding mesh techniques. To reduce the mesh size and thus the simulation time, symmetrical boundary conditions were applied to rotating body faces. A mesh grid sensitivity study was conducted to define the optimum mesh size. Additionally, hybrid numerical approaches combining coupled and SIMPLE solvers were particularly influential in reducing computational time. Concave- and convex-arced-shaped faces deflectors were compared to the original truncated cone deflector, showing an increase in the performance for the convex type and a decrease for the concave one. Then, eight cases involving convex spline shape deflectors were simulated. All these deflectors had an equal volume to the original truncated cone deflector. One of the cases showed a 20% average increase in the performance over the original deflector. This result shows the importance of the geometrical shapes in the design of axisymmetric deflectors.

Suggested Citation

  • Hady Aboujaoude & Fabien Bogard & Fabien Beaumont & Sébastien Murer & Guillaume Polidori, 2023. "Aerodynamic Performance Enhancement of an Axisymmetric Deflector Applied to Savonius Wind Turbine Using Novel Transient 3D CFD Simulation Techniques," Energies, MDPI, vol. 16(2), pages 1-12, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:909-:d:1034561
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/909/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/909/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ghazalla, R.A. & Mohamed, M.H. & Hafiz, A.A., 2019. "Synergistic analysis of a Darrieus wind turbine using computational fluid dynamics," Energy, Elsevier, vol. 189(C).
    2. Mohamed, M.H. & Janiga, G. & Pap, E. & Thévenin, D., 2010. "Optimization of Savonius turbines using an obstacle shielding the returning blade," Renewable Energy, Elsevier, vol. 35(11), pages 2618-2626.
    3. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 108(C), pages 502-522.
    4. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a single stage modified Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 113(C), pages 461-478.
    5. Golecha, Kailash & Eldho, T.I. & Prabhu, S.V., 2011. "Influence of the deflector plate on the performance of modified Savonius water turbine," Applied Energy, Elsevier, vol. 88(9), pages 3207-3217.
    6. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2019. "On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines," Energy, Elsevier, vol. 180(C), pages 838-857.
    7. Tartuferi, Mariano & D'Alessandro, Valerio & Montelpare, Sergio & Ricci, Renato, 2015. "Enhancement of Savonius wind rotor aerodynamic performance: a computational study of new blade shapes and curtain systems," Energy, Elsevier, vol. 79(C), pages 371-384.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Fen & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2020. "Experimental and numerical validation of the influence on Savonius turbine caused by rear deflector," Energy, Elsevier, vol. 196(C).
    2. Hashem, Islam & Zhu, Baoshan, 2021. "Metamodeling-based parametric optimization of a bio-inspired Savonius-type hydrokinetic turbine," Renewable Energy, Elsevier, vol. 180(C), pages 560-576.
    3. Chan, C.M. & Bai, H.L. & He, D.Q., 2018. "Blade shape optimization of the Savonius wind turbine using a genetic algorithm," Applied Energy, Elsevier, vol. 213(C), pages 148-157.
    4. Patel, Vimal & Eldho, T.I. & Prabhu, S.V., 2019. "Velocity and performance correction methodology for hydrokinetic turbines experimented with different geometry of the channel," Renewable Energy, Elsevier, vol. 131(C), pages 1300-1317.
    5. Can Kang & Wisdom Opare & Chen Pan & Ziwen Zou, 2018. "Upstream Flow Control for the Savonius Rotor under Various Operation Conditions," Energies, MDPI, vol. 11(6), pages 1-20, June.
    6. John, Bony & Thomas, Rony N. & Varghese, James, 2020. "Integration of hydrokinetic turbine-PV-battery standalone system for tropical climate condition," Renewable Energy, Elsevier, vol. 149(C), pages 361-373.
    7. Montelpare, Sergio & D'Alessandro, Valerio & Zoppi, Andrea & Ricci, Renato, 2018. "Experimental study on a modified Savonius wind rotor for street lighting systems. Analysis of external appendages and elements," Energy, Elsevier, vol. 144(C), pages 146-158.
    8. Kamal, Md. Mustafa & Saini, R.P., 2022. "A numerical investigation on the influence of savonius blade helicity on the performance characteristics of hybrid cross-flow hydrokinetic turbine," Renewable Energy, Elsevier, vol. 190(C), pages 788-804.
    9. Wong, Kok Hoe & Chong, Wen Tong & Sukiman, Nazatul Liana & Poh, Sin Chew & Shiah, Yui-Chuin & Wang, Chin-Tsan, 2017. "Performance enhancements on vertical axis wind turbines using flow augmentation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 904-921.
    10. Sarma, Kanak Chandra & Biswas, Agnimitra & Misra, Rahul Dev, 2022. "Experimental investigation of a two-bladed double stage Savonius-akin hydrokinetic turbine at low flow velocity conditions," Renewable Energy, Elsevier, vol. 187(C), pages 958-973.
    11. C M, Shashikumar & Madav, Vasudeva, 2021. "Numerical and experimental investigation of modified V-shaped turbine blades for hydrokinetic energy generation," Renewable Energy, Elsevier, vol. 177(C), pages 1170-1197.
    12. Zhang, Yongchao & Kang, Can & Ji, Yanguang & Li, Qing, 2019. "Experimental and numerical investigation of flow patterns and performance of a modified Savonius hydrokinetic rotor," Renewable Energy, Elsevier, vol. 141(C), pages 1067-1079.
    13. Noman, Abdullah Al & Tasneem, Zinat & Sahed, Md. Fahad & Muyeen, S.M. & Das, Sajal K. & Alam, Firoz, 2022. "Towards next generation Savonius wind turbine: Artificial intelligence in blade design trends and framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Jianjun Yao & Fengshen Li & Junhua Chen & Zheng Yuan & Wangeng Mai, 2019. "Parameter Analysis of Savonius Hydraulic Turbine Considering the Effect of Reducing Flow Velocity," Energies, MDPI, vol. 13(1), pages 1-16, December.
    15. Kuo-Tsai Wu & Kuo-Hao Lo & Ruey-Chy Kao & Sheng-Jye Hwang, 2022. "Numerical and Experimental Investigation of the Effect of Design Parameters on Savonius-Type Hydrokinetic Turbine Performance," Energies, MDPI, vol. 15(5), pages 1-19, March.
    16. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a single stage modified Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 113(C), pages 461-478.
    17. Zitti, Gianluca & Fattore, Fernando & Brunori, Alessandro & Brunori, Bruno & Brocchini, Maurizio, 2020. "Efficiency evaluation of a ductless Archimedes turbine: Laboratory experiments and numerical simulations," Renewable Energy, Elsevier, vol. 146(C), pages 867-879.
    18. Kerikous, Emeel & Thévenin, Dominique, 2019. "Optimal shape of thick blades for a hydraulic Savonius turbine," Renewable Energy, Elsevier, vol. 134(C), pages 629-638.
    19. C M, Shashikumar & Honnasiddaiah, Ramesh & Hindasageri, Vijaykumar & Madav, Vasudeva, 2021. "Studies on application of vertical axis hydro turbine for sustainable power generation in irrigation channels with different bed slopes," Renewable Energy, Elsevier, vol. 163(C), pages 845-857.
    20. Ramadan, A. & Yousef, K. & Said, M. & Mohamed, M.H., 2018. "Shape optimization and experimental validation of a drag vertical axis wind turbine," Energy, Elsevier, vol. 151(C), pages 839-853.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:909-:d:1034561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.