IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i24p8078-d1301041.html
   My bibliography  Save this article

Review of Micro- and Nanobubble Technologies: Advancements in Theory and Applications and Perspectives on Adsorption Cooling and Desalination Systems

Author

Listed:
  • Lukasz Lasek

    (Faculty of Health Sciences, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland)

  • Jaroslaw Krzywanski

    (Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland)

  • Dorian Skrobek

    (Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland)

  • Anna Zylka

    (Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland)

  • Wojciech Nowak

    (Faculty of Energy and Fuels, AGH University of Science and Technology, Mickiewicza 30 St., 30-059 Krakow, Poland)

Abstract

Adsorption refrigerators are a compelling ecological alternative to compressor refrigerators; global warming forces us to constantly look for alternative sources of energy and cold. Cold production in adsorption chillers is based on the use of heat generated by other processes running in the company. Waste heat from production processes, which has, until now, been irretrievably lost, is a potential source of energy for generating cold via an adsorption unit producing chilled water. Cooling optimizes the use of the heating network in summer and can lead to increased electricity production while reducing heat supply losses. Thus far, attempts to implement adsorption refrigerators for widespread use have not been successful as a result of the low efficiency of these devices; this is directly related to the poor heat and mass transfer conditions in the beds and heat exchangers of adsorption refrigerators. The solutions used so far, such as new working pairs, glued beds or modifications to the structure or cycle length, are still not strong enough for these devices. Therefore, it is necessary to look for new solutions. Using micro- and nanobubbles as media to increase mass and heat transfer in refrigerators is an innovative and pioneering solution. Thus, this document describes the most important features of micro- and nanobubble technology applications in adsorption refrigerators. This article is an introduction and a basis for the implementation of further research, consolidating the existing literature as a review.

Suggested Citation

  • Lukasz Lasek & Jaroslaw Krzywanski & Dorian Skrobek & Anna Zylka & Wojciech Nowak, 2023. "Review of Micro- and Nanobubble Technologies: Advancements in Theory and Applications and Perspectives on Adsorption Cooling and Desalination Systems," Energies, MDPI, vol. 16(24), pages 1, December.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8078-:d:1301041
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/24/8078/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/24/8078/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dorian Skrobek & Jaroslaw Krzywanski & Marcin Sosnowski & Anna Kulakowska & Anna Zylka & Karolina Grabowska & Katarzyna Ciesielska & Wojciech Nowak, 2020. "Prediction of Sorption Processes Using the Deep Learning Methods (Long Short-Term Memory)," Energies, MDPI, vol. 13(24), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Benan & Long, Chengjun & Du, Qiaochen & Zhang, Wenchao & Hou, Yandong & Wang, Haijun & Cai, Weihua, 2023. "Analysis of a spray flash desalination system driven by low-grade waste heat with different intermittencies," Energy, Elsevier, vol. 277(C).
    2. Eşlik, Ardan Hüseyin & Akarslan, Emre & Hocaoğlu, Fatih Onur, 2022. "Short-term solar radiation forecasting with a novel image processing-based deep learning approach," Renewable Energy, Elsevier, vol. 200(C), pages 1490-1505.
    3. Gairaa, Kacem & Voyant, Cyril & Notton, Gilles & Benkaciali, Saïd & Guermoui, Mawloud, 2022. "Contribution of ordinal variables to short-term global solar irradiation forecasting for sites with low variabilities," Renewable Energy, Elsevier, vol. 183(C), pages 890-902.
    4. Chen, Hang & Wei, Shanbi & Yang, Wei & Liu, Shanchao, 2023. "Input wind speed forecasting for wind turbines based on spatio-temporal correlation," Renewable Energy, Elsevier, vol. 216(C).
    5. AL-Alimi, Dalal & AlRassas, Ayman Mutahar & Al-qaness, Mohammed A.A. & Cai, Zhihua & Aseeri, Ahmad O. & Abd Elaziz, Mohamed & Ewees, Ahmed A., 2023. "TLIA: Time-series forecasting model using long short-term memory integrated with artificial neural networks for volatile energy markets," Applied Energy, Elsevier, vol. 343(C).
    6. George Kandilogiannakis & Paris Mastorocostas & Athanasios Voulodimos, 2022. "ReNFuzz-LF: A Recurrent Neurofuzzy System for Short-Term Load Forecasting," Energies, MDPI, vol. 15(10), pages 1-18, May.
    7. Hu, Huanling & Wang, Lin & Zhang, Dabin & Ling, Liwen, 2023. "Rolling decomposition method in fusion with echo state network for wind speed forecasting," Renewable Energy, Elsevier, vol. 216(C).
    8. Marcin Sosnowski & Jaroslaw Krzywanski & Norbert Skoczylas, 2022. "Adsorption Desalination and Cooling Systems: Advances in Design, Modeling and Performance," Energies, MDPI, vol. 15(11), pages 1-6, May.
    9. Azizi, Narjes & Yaghoubirad, Maryam & Farajollahi, Meisam & Ahmadi, Abolfzl, 2023. "Deep learning based long-term global solar irradiance and temperature forecasting using time series with multi-step multivariate output," Renewable Energy, Elsevier, vol. 206(C), pages 135-147.
    10. Moradzadeh, Arash & Moayyed, Hamed & Mohammadi-Ivatloo, Behnam & Vale, Zita & Ramos, Carlos & Ghorbani, Reza, 2023. "A novel cyber-Resilient solar power forecasting model based on secure federated deep learning and data visualization," Renewable Energy, Elsevier, vol. 211(C), pages 697-705.
    11. Tauseef Aized & Muhammad Rashid & Fahid Riaz & Ameer Hamza & Hafiz Zahid Nabi & Muhammad Sultan & Waqar Muhammad Ashraf & Jaroslaw Krzywanski, 2022. "Energy and Exergy Analysis of Vapor Compression Refrigeration System with Low-GWP Refrigerants," Energies, MDPI, vol. 15(19), pages 1-22, October.
    12. Dorian Skrobek & Jaroslaw Krzywanski & Marcin Sosnowski & Ghulam Moeen Uddin & Waqar Muhammad Ashraf & Karolina Grabowska & Anna Zylka & Anna Kulakowska & Wojciech Nowak, 2023. "Artificial Intelligence for Energy Processes and Systems: Applications and Perspectives," Energies, MDPI, vol. 16(8), pages 1-12, April.
    13. Jaroslaw Krzywanski, 2022. "Advanced AI Applications in Energy and Environmental Engineering Systems," Energies, MDPI, vol. 15(15), pages 1-3, August.
    14. Muhammad Kaleem & Muzaffar Ali & Nadeem Ahmed Sheikh & Javed Akhtar & Rasikh Tariq & Jaroslaw Krzywanski, 2023. "Performance Characteristic Analysis of Metallic and Non-Metallic Oxide Nanofluids for a Compound Parabolic Collector: Improvement of Renewable Energy Technologies in Buildings," Energies, MDPI, vol. 16(3), pages 1-24, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8078-:d:1301041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.