IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i24p8069-d1300457.html
   My bibliography  Save this article

Methanol Combustion Characteristics in Compression Ignition Engines: A Critical Review

Author

Listed:
  • Panagiotis Karvounis

    (Maritime Safety Research Centre, Department of Naval Architecture, Ocean, and Marine Engineering, University of Strathclyde, Glasgow G4 0LZ, UK)

  • Gerasimos Theotokatos

    (Maritime Safety Research Centre, Department of Naval Architecture, Ocean, and Marine Engineering, University of Strathclyde, Glasgow G4 0LZ, UK)

  • Ioannis Vlaskos

    (WinGD, 8401 Winterthur, Switzerland)

  • Antonios Hatziapostolou

    (Department of Naval Architecture, University of West Attica, 12243 Egaleo, Greece)

Abstract

Methanol has been identified as a transition fuel for the decarbonisation of combustion-based industries, including automotive and maritime. This study aims to conduct a critical review of methanol combustion in compression ignition engines and analyse the reviewed studies’ results to quantify methanol use’s impact on engine performance and emissions characteristics. The diesel and diesel–methanol operation of these engines are comparatively assessed, demonstrating the trade-offs between the methanol fraction, the key engine performance parameters, including brake thermal efficiency, peak in-cylinder pressure, heat release rate, and temperature, as well as the carbon dioxide, carbon monoxide, nitrogen oxides, and particulate matter emissions. The types of the reviewed engines considering the main two combustion methods, namely premixed and diffusion combustion, are discussed. Research gaps are identified, and recommendations for future research directions to address existing challenges for the wider use of methanol as a marine fuel are provided. This comprehensive review provides insights supporting methanol engine operation, and it is expected to lead to further studies towards more efficient use of methanol-fueled marine engines.

Suggested Citation

  • Panagiotis Karvounis & Gerasimos Theotokatos & Ioannis Vlaskos & Antonios Hatziapostolou, 2023. "Methanol Combustion Characteristics in Compression Ignition Engines: A Critical Review," Energies, MDPI, vol. 16(24), pages 1-26, December.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8069-:d:1300457
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/24/8069/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/24/8069/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Lincheng & Hu, Mingda & Qu, Wenjing & Gong, Zhen & Feng, Liyan, 2021. "Shock tube and kinetic study on auto-ignition characteristics of methanol/n-heptane mixtures at high temperature," Energy, Elsevier, vol. 233(C).
    2. Wei, Lijiang & Yao, Chunde & Han, Guopeng & Pan, Wang, 2016. "Effects of methanol to diesel ratio and diesel injection timing on combustion, performance and emissions of a methanol port premixed diesel engine," Energy, Elsevier, vol. 95(C), pages 223-232.
    3. Li, Yaopeng & Jia, Ming & Liu, Yaodong & Xie, Maozhao, 2013. "Numerical study on the combustion and emission characteristics of a methanol/diesel reactivity controlled compression ignition (RCCI) engine," Applied Energy, Elsevier, vol. 106(C), pages 184-197.
    4. Rakopoulos, C.D. & Dimaratos, A.M. & Giakoumis, E.G. & Rakopoulos, D.C., 2011. "Study of turbocharged diesel engine operation, pollutant emissions and combustion noise radiation during starting with bio-diesel or n-butanol diesel fuel blends," Applied Energy, Elsevier, vol. 88(11), pages 3905-3916.
    5. Park, Sangjun & Cho, Jungkeun & Park, Jungsoo & Song, Soonho, 2017. "Numerical study of the performance and NOx emission of a diesel-methanol dual-fuel engine using multi-objective Pareto optimization," Energy, Elsevier, vol. 124(C), pages 272-283.
    6. De Bellis, Vincenzo & Malfi, Enrica & Lanotte, Alfredo & Fasulo, Giovanni & Bozza, Fabio & Cafari, Alberto & Caputo, Gennaro & Hyvönen, Jari, 2022. "Development of a phenomenological model for the description of RCCI combustion in a dual-fuel marine internal combustion engine," Applied Energy, Elsevier, vol. 325(C).
    7. Li, Yaopeng & Jia, Ming & Chang, Yachao & Liu, Yaodong & Xie, Maozhao & Wang, Tianyou & Zhou, Lei, 2014. "Parametric study and optimization of a RCCI (reactivity controlled compression ignition) engine fueled with methanol and diesel," Energy, Elsevier, vol. 65(C), pages 319-332.
    8. Liu, Junheng & Yang, Jun & Sun, Ping & Gao, Wanying & Yang, Chen & Fang, Jia, 2019. "Compound combustion and pollutant emissions characteristics of a common-rail engine with ethanol homogeneous charge and polyoxymethylene dimethyl ethers injection," Applied Energy, Elsevier, vol. 239(C), pages 1154-1162.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Junheng & Wu, Pengcheng & Ji, Qian & Sun, Ping & Wang, Pan & Meng, Zhongwei & Ma, Hongjie, 2022. "Experimental study on effects of pilot injection strategy on combustion and emission characteristics of diesel/methanol dual-fuel engine under low load," Energy, Elsevier, vol. 247(C).
    2. Agarwal, Avinash Kumar & Kumar, Vikram & Ankur Kalwar, Ashutosh Jena, 2022. "Fuel injection strategy optimisation and experimental performance and emissions evaluation of diesel displacement by port fuel injected methanol in a retrofitted mid-size genset engine prototype," Energy, Elsevier, vol. 248(C).
    3. Dongzhi Gao & Mubasher Ikram & Chao Geng & Yangyi Wu & Xiaodan Li & Chao Jin & Zunqing Zheng & Mengliang Li & Haifeng Liu, 2023. "Effects of Anhydrous and Hydrous Fusel Oil on Combustion and Emissions on a Heavy-Duty Compression-Ignition Engine," Energies, MDPI, vol. 16(17), pages 1-14, August.
    4. Pan, Suozhu & Cai, Kai & Cai, Min & Du, Chenbo & Li, Xin & Han, Weiqiang & Wang, Xin & Liu, Daming & Wei, Jiangjun & Fang, Jia & Bao, Xiuchao, 2021. "Experimental study on the cyclic variations of ethanol/diesel reactivity controlled compression ignition (RCCI) combustion in a heavy-duty diesel engine," Energy, Elsevier, vol. 237(C).
    5. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Wei, Jiangjun & He, Chengjun & Lv, Gang & Zhuang, Yuan & Qian, Yejian & Pan, Suozhu, 2021. "The combustion, performance and emissions investigation of a dual-fuel diesel engine using silicon dioxide nanoparticle additives to methanol," Energy, Elsevier, vol. 230(C).
    7. Ma, Baodong & Yao, Anren & Yao, Chunde & Wang, Wenchao & Ai, Youkai, 2021. "Numerical investigation and experimental validation on the leakage of methanol and formaldehyde in diesel methanol dual fuel engine with different valve overlap," Applied Energy, Elsevier, vol. 300(C).
    8. Li, Jing & Yang, Wen Ming & Goh, Thong Ngee & An, Hui & Maghbouli, Amin, 2014. "Study on RCCI (reactivity controlled compression ignition) engine by means of statistical experimental design," Energy, Elsevier, vol. 78(C), pages 777-787.
    9. Wei, Lijiang & Yao, Chunde & Han, Guopeng & Pan, Wang, 2016. "Effects of methanol to diesel ratio and diesel injection timing on combustion, performance and emissions of a methanol port premixed diesel engine," Energy, Elsevier, vol. 95(C), pages 223-232.
    10. Ma, Baodong & Yao, Anren & Yao, Chunde & Chen, Chao & Qu, Guofan & Wang, Wenchao & Ai, Youkai, 2021. "Multiple combustion modes existing in the engine operating in diesel methanol dual fuel," Energy, Elsevier, vol. 234(C).
    11. Kakati, Dipankar & Biswas, Srijit & Banerjee, Rahul, 2021. "Parametric sensitivity analysis of split injection coupled varying methanol induced reactivity strategies on the exergy efficiency enhancement and emission reductions objectives in a biodiesel fuelled," Energy, Elsevier, vol. 225(C).
    12. Li, Jing & Yu, Xiao & Xie, Jingcheng & Yang, Wenming, 2020. "Mitigation of high pressure rise rate by varying IVC timing and EGR rate in an RCCI engine with high premixed fuel ratio," Energy, Elsevier, vol. 192(C).
    13. Li, Jing & Yang, Wenming & Zhou, Dezhi, 2017. "Review on the management of RCCI engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 65-79.
    14. Lee, Seungpil & Park, Sungwook, 2017. "Optimization of the piston bowl geometry and the operating conditions of a gasoline-diesel dual-fuel engine based on a compression ignition engine," Energy, Elsevier, vol. 121(C), pages 433-448.
    15. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    16. Tan, Pi-qiang & Ruan, Shuai-shuai & Hu, Zhi-yuan & Lou, Di-ming & Li, Hu, 2014. "Particle number emissions from a light-duty diesel engine with biodiesel fuels under transient-state operating conditions," Applied Energy, Elsevier, vol. 113(C), pages 22-31.
    17. Masurier, J.-B. & Foucher, F. & Dayma, G. & Dagaut, P., 2015. "Ozone applied to the homogeneous charge compression ignition engine to control alcohol fuels combustion," Applied Energy, Elsevier, vol. 160(C), pages 566-580.
    18. Ibrahim, Amin & Rahnamayan, Shahryar & Vargas Martin, Miguel & Yilbas, Bekir, 2014. "Multi-objective thermal analysis of a thermoelectric device: Influence of geometric features on device characteristics," Energy, Elsevier, vol. 77(C), pages 305-317.
    19. Liu, Junheng & Sun, Ping & Huang, He & Meng, Jian & Yao, Xiaohua, 2017. "Experimental investigation on performance, combustion and emission characteristics of a common-rail diesel engine fueled with polyoxymethylene dimethyl ethers-diesel blends," Applied Energy, Elsevier, vol. 202(C), pages 527-536.
    20. Cho, Jungkeun & Park, Sangjun & Song, Soonho, 2019. "The effects of the air-fuel ratio on a stationary diesel engine under dual-fuel conditions and multi-objective optimization," Energy, Elsevier, vol. 187(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8069-:d:1300457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.