IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i23p7893-d1293254.html
   My bibliography  Save this article

Passive Mixing and Convective Heat Transfer Enhancement for Nanofluid Flow across Corrugated Base Microchannels

Author

Listed:
  • Ali Ammar Naqvi

    (Department of Mechanical and Aerospace Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA)

  • Emad Uddin

    (Computational Mechanics Group, Department of Mechanical Engineering, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology, Islamabad 44000, Pakistan)

  • Muhammad Zia Ullah Khan

    (School of Computation, Information and Technology, Technical University Munich, 80333 München, Germany)

Abstract

Vortex generators and pin fins are conventionally used to deliver fluid mixing and improved convective heat transfer. The increased pressure loss following a fractional increase in heat transfer, as well as the complex manufacturing design, leave room for improvement. The present work proposes a novel diverging–converging base corrugation model coupled with vortex generation using simple geometrical modifications across rectangular microchannels to ensure a superior performance. The Nusselt number, friction factor, and flow phenomenon were numerically studied across a Reynolds number range of 50–1000. The optimum cross-section of the microchannel-generating vortices was determined after thorough study, and base corrugation was further added to improve heat transfer. For the vortex–corrugation modeling, the heat transfer enhancement was verified in two optimized cases: (1) curved corrugated model, (2) interacting corrugated model. In the first case, an optimized curve generating Dean vortices was coupled with base corrugation. An overall increase in the Nusselt number of up to 32.69% and the thermal performance of “1.285 TPF” were observed at a high Reynolds number. The interacting channels with connecting bridges of varying width were found to generate vortices in the counter-flow configuration. The thermal performance of “1.25 TPF” was almost identical to the curved corrugated model; however, a major decrease in pressure, with a loss of 26.88%, was observed for this configuration.

Suggested Citation

  • Ali Ammar Naqvi & Emad Uddin & Muhammad Zia Ullah Khan, 2023. "Passive Mixing and Convective Heat Transfer Enhancement for Nanofluid Flow across Corrugated Base Microchannels," Energies, MDPI, vol. 16(23), pages 1-23, December.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7893-:d:1293254
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/23/7893/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/23/7893/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jingnan Li & Li Yang, 2023. "Recent Development of Heat Sink and Related Design Methods," Energies, MDPI, vol. 16(20), pages 1-23, October.
    2. Jéssica Martha Nunes & Jeferson Diehl de Oliveira & Jacqueline Biancon Copetti & Sameer Sheshrao Gajghate & Utsab Banerjee & Sushanta K. Mitra & Elaine Maria Cardoso, 2023. "Thermal Performance Analysis of Micro Pin Fin Heat Sinks under Different Flow Conditions," Energies, MDPI, vol. 16(7), pages 1-13, March.
    3. Ebrahimi, Amin & Rikhtegar, Farhad & Sabaghan, Amin & Roohi, Ehsan, 2016. "Heat transfer and entropy generation in a microchannel with longitudinal vortex generators using nanofluids," Energy, Elsevier, vol. 101(C), pages 190-201.
    4. Habibi Khalaj, Ali & Halgamuge, Saman K., 2017. "A Review on efficient thermal management of air- and liquid-cooled data centers: From chip to the cooling system," Applied Energy, Elsevier, vol. 205(C), pages 1165-1188.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziya Sogut, M., 2021. "New approach for assessment of environmental effects based on entropy optimization of jet engine," Energy, Elsevier, vol. 234(C).
    2. Asad Ullah & Nahid Fatima & Khalid Abdulkhaliq M. Alharbi & Samia Elattar & Ikramullah & Waris Khan, 2023. "A Numerical Analysis of the Hybrid Nanofluid (Ag+TiO 2 +Water) Flow in the Presence of Heat and Radiation Fluxes," Energies, MDPI, vol. 16(3), pages 1-15, January.
    3. Mwesigye, Aggrey & Meyer, Josua P., 2017. "Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios," Applied Energy, Elsevier, vol. 193(C), pages 393-413.
    4. Lahoucine Ouhsaine & Mohammed El Ganaoui & Abdelaziz Mimet & Jean-Michel Nunzi, 2021. "A Substitutive Coefficients Network for the Modelling of Thermal Systems: A Mono-Zone Building Case Study," Energies, MDPI, vol. 14(9), pages 1-19, April.
    5. Ye, Guisen & Gao, Feng & Fang, Jingyang, 2022. "A mission-driven two-step virtual machine commitment for energy saving of modern data centers through UPS and server coordinated optimizations," Applied Energy, Elsevier, vol. 322(C).
    6. Xiaofei Huang & Junwei Yan & Xuan Zhou & Yixin Wu & Shichen Hu, 2023. "Cooling Technologies for Internet Data Center in China: Principle, Energy Efficiency, and Applications," Energies, MDPI, vol. 16(20), pages 1-31, October.
    7. Zhang, Yingbo & Shan, Kui & Li, Xiuming & Li, Hangxin & Wang, Shengwei, 2023. "Research and Technologies for next-generation high-temperature data centers – State-of-the-arts and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    8. Moazamigoodarzi, Hosein & Tsai, Peiying Jennifer & Pal, Souvik & Ghosh, Suvojit & Puri, Ishwar K., 2019. "Influence of cooling architecture on data center power consumption," Energy, Elsevier, vol. 183(C), pages 525-535.
    9. Habibi Khalaj, Ali & Abdulla, Khalid & Halgamuge, Saman K., 2018. "Towards the stand-alone operation of data centers with free cooling and optimally sized hybrid renewable power generation and energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 451-472.
    10. Li, Xingping & Li, Ji & Zhou, Guohui & Lv, Lucang, 2020. "Quantitative analysis of passive seasonal cold storage with a two-phase closed thermosyphon," Applied Energy, Elsevier, vol. 260(C).
    11. Martin O. L. Hansen & Antonis Charalampous & Jean-Marc Foucaut & Christophe Cuvier & Clara M. Velte, 2019. "Validation of a Model for Estimating the Strength of a Vortex Created from the Bound Circulation of a Vortex Generator," Energies, MDPI, vol. 12(14), pages 1-14, July.
    12. Sijun Xu & Hua Zhang & Zilong Wang, 2023. "Thermal Management and Energy Consumption in Air, Liquid, and Free Cooling Systems for Data Centers: A Review," Energies, MDPI, vol. 16(3), pages 1-25, January.
    13. Syafiq Zainodin & Anuar Jamaludin & Roslinda Nazar & Ioan Pop, 2022. "MHD Mixed Convection of Hybrid Ferrofluid Flow over an Exponentially Stretching/Shrinking Surface with Heat Source/Sink and Velocity Slip," Mathematics, MDPI, vol. 10(23), pages 1-20, November.
    14. Tian, Tong & Wang, Xinyue & Liu, Yang & Yang, Xuan & Sun, Bo & Li, Ji, 2023. "Nano-engineering enabled heat pipe battery: A powerful heat transfer infrastructure with capability of power generation," Applied Energy, Elsevier, vol. 348(C).
    15. Liu, Pengfei & Kandasamy, Ranjith & Ho, Jin Yao & Wong, Teck Neng & Toh, Kok Chuan, 2023. "Dynamic performance analysis and thermal modelling of a novel two-phase spray cooled rack system for data center cooling," Energy, Elsevier, vol. 269(C).
    16. Wang, Wei & Abdolrashidi, Amirali & Yu, Nanpeng & Wong, Daniel, 2019. "Frequency regulation service provision in data center with computational flexibility," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    17. Huang, Pei & Copertaro, Benedetta & Zhang, Xingxing & Shen, Jingchun & Löfgren, Isabelle & Rönnelid, Mats & Fahlen, Jan & Andersson, Dan & Svanfeldt, Mikael, 2020. "A review of data centers as prosumers in district energy systems: Renewable energy integration and waste heat reuse for district heating," Applied Energy, Elsevier, vol. 258(C).
    18. Graamans, Luuk & Tenpierik, Martin & van den Dobbelsteen, Andy & Stanghellini, Cecilia, 2020. "Plant factories: Reducing energy demand at high internal heat loads through façade design," Applied Energy, Elsevier, vol. 262(C).
    19. Zakariya Kaneesamkandi & Abdulaziz Almujahid & Basharat Salim & Abdul Sayeed & Waleed Mohammed AlFadda, 2023. "Enhancement of Condenser Performance in Vapor Absorption Refrigeration Systems Operating in Arid Climatic Zones—Selection of Best Option," Energies, MDPI, vol. 16(21), pages 1-18, November.
    20. Mousa, Mohamed H. & Yang, Cheng-Min & Nawaz, Kashif & Miljkovic, Nenad, 2022. "Review of heat transfer enhancement techniques in two-phase flows for highly efficient and sustainable cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7893-:d:1293254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.