IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i23p7818-d1289437.html
   My bibliography  Save this article

Thermodynamic Investigation and Economic Evaluation of a High-Temperature Triple Organic Rankine Cycle System

Author

Listed:
  • Pengcheng Li

    (School of Automotive and Transportation Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230002, China
    Dongfang Boiler Co., Ltd., Dongfang Electric Group, Zigong 643001, China)

  • Chengxing Shu

    (School of Automotive and Transportation Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230002, China)

  • Jing Li

    (Research Center for Sustainable Energy Technologies, Energy and Environment Institute, University of Hull, Hull HU6 7RX, UK)

  • Yandong Wang

    (Hefei General Machinery Research Institute, 888 Changjiang Road, Hefei 230031, China)

  • Yanxin Chen

    (School of Automotive and Transportation Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230002, China)

  • Xiao Ren

    (School of New Energy, China University of Petroleum, Qingdao 266580, China)

  • Desuan Jie

    (School of Automotive and Transportation Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230002, China)

  • Xunfen Liu

    (School of Automotive and Transportation Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230002, China)

Abstract

Triple organic Rankine cycle (TORC) is gradually gaining interest, but the maximum thermal efficiencies (around 30%) are restricted by low critical temperatures of common working fluids (<320 °C). This paper proposes a high-temperature (up to 400 °C) TORC system to ramp up efficiency. A near-azeotropic mixture biphenyl/diphenyl oxide (BDO), which has a stellar track record in the high-temperature ORC applications, is innovatively adopted as the top and middle ORC fluid simultaneously. Four conventional organic fluids are chosen for the bottom ORC. A mixing heat exchanger connects the top and middle ORCs to reduce irreversible loss. Thermodynamic analysis hints that the optimal performance is achieved on the use of benzene as the bottom fluid. The maximum thermal and exergy efficiencies are respectively 40.86% and 74.14%. The largest exergy destruction occurs inside the heat exchanger coupling the middle and bottom ORCs, accounting for above 30% of the total entropy generation. The levelized energy cost (LEC) is 0.0368 USD/kWh. Given the same heat source condition, the TORC system can boost the efficiency by 1.02% and drive down LEC by 0.0032 USD/kWh compared with a BDO mixture-based cascade ORC. The proposed system is promising in solar thermal power generation and Carnot battery applications using phase change materials for storage.

Suggested Citation

  • Pengcheng Li & Chengxing Shu & Jing Li & Yandong Wang & Yanxin Chen & Xiao Ren & Desuan Jie & Xunfen Liu, 2023. "Thermodynamic Investigation and Economic Evaluation of a High-Temperature Triple Organic Rankine Cycle System," Energies, MDPI, vol. 16(23), pages 1-25, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7818-:d:1289437
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/23/7818/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/23/7818/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Jing & Alvi, Jahan Zeb & Pei, Gang & Su, Yuehong & Li, Pengcheng & Gao, Guangtao & Ji, Jie, 2016. "Modelling of organic Rankine cycle efficiency with respect to the equivalent hot side temperature," Energy, Elsevier, vol. 115(P1), pages 668-683.
    2. Cataldo, Filippo & Mastrullo, Rita & Mauro, Alfonso William & Vanoli, Giuseppe Peter, 2014. "Fluid selection of Organic Rankine Cycle for low-temperature waste heat recovery based on thermal optimization," Energy, Elsevier, vol. 72(C), pages 159-167.
    3. Li, Pengcheng & Ye, Jing & Li, Jing & Wang, Yandong & Jiang, Xiaobin & Qian, Tongle & Pei, Gang & Liu, Xunfen, 2023. "Thermodynamic and techno-economic analysis of a direct thermal oil vaporization solar power system," Energy, Elsevier, vol. 282(C).
    4. Zhang, Cheng & Liu, Chao & Wang, Shukun & Xu, Xiaoxiao & Li, Qibin, 2017. "Thermo-economic comparison of subcritical organic Rankine cycle based on different heat exchanger configurations," Energy, Elsevier, vol. 123(C), pages 728-741.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Pengcheng & Ye, Jing & Li, Jing & Wang, Yandong & Jiang, Xiaobin & Qian, Tongle & Pei, Gang & Liu, Xunfen, 2023. "Thermodynamic and techno-economic analysis of a direct thermal oil vaporization solar power system," Energy, Elsevier, vol. 282(C).
    2. Li, Pengcheng & Lin, Haiwei & Li, Jing & Cao, Qing & Wang, Yandong & Pei, Gang & Jie, Desuan & Zhao, Zilong, 2022. "Analysis of a direct vapor generation system using cascade steam-organic Rankine cycle and two-tank oil storage," Energy, Elsevier, vol. 257(C).
    3. Li, Pengcheng & Cao, Qing & Li, Jing & Lin, Haiwei & Wang, Yandong & Gao, Guangtao & Pei, Gang & Jie, Desuan & Liu, Xunfen, 2021. "An innovative approach to recovery of fluctuating industrial exhaust heat sources using cascade Rankine cycle and two-stage accumulators," Energy, Elsevier, vol. 228(C).
    4. Li, Jing & Li, Pengcheng & Gao, Guangtao & Pei, Gang & Su, Yuehong & Ji, Jie, 2017. "Thermodynamic and economic investigation of a screw expander-based direct steam generation solar cascade Rankine cycle system using water as thermal storage fluid," Applied Energy, Elsevier, vol. 195(C), pages 137-151.
    5. Yi, Zhitong & Luo, Xianglong & Chen, Jianyong & Chen, Ying, 2017. "Mathematical modelling and optimization of a liquid separation condenser-based organic Rankine cycle used in waste heat utilization," Energy, Elsevier, vol. 139(C), pages 916-934.
    6. Li, Pengcheng & Cao, Qing & Li, Jing & Wang, Yandong & Pei, Gang & Gao, Cai & Zhao, Hongling & Liu, Xunfen, 2020. "Effect of regenerator on the direct steam generation solar power system characterized by prolonged thermal storage and stable power conversion," Renewable Energy, Elsevier, vol. 159(C), pages 1099-1116.
    7. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    8. Li, Jian & Liu, Qiang & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Di, Jiawei, 2017. "Optimized liquid-separated thermodynamic states for working fluids of organic Rankine cycles with liquid-separated condensation," Energy, Elsevier, vol. 141(C), pages 652-660.
    9. Jiménez-Arreola, Manuel & Pili, Roberto & Wieland, Christoph & Romagnoli, Alessandro, 2018. "Analysis and comparison of dynamic behavior of heat exchangers for direct evaporation in ORC waste heat recovery applications from fluctuating sources," Applied Energy, Elsevier, vol. 216(C), pages 724-740.
    10. Chang, Huawei & Wan, Zhongmin & Zheng, Yao & Chen, Xi & Shu, Shuiming & Tu, Zhengkai & Chan, Siew Hwa & Chen, Rui & Wang, Xiaodong, 2017. "Energy- and exergy-based working fluid selection and performance analysis of a high-temperature PEMFC-based micro combined cooling heating and power system," Applied Energy, Elsevier, vol. 204(C), pages 446-458.
    11. Wang, Enhua & Zhang, Hongguang & Fan, Boyuan & Ouyang, Minggao & Yang, Kai & Yang, Fuyuan & Li, Xiaojuan & Wang, Zhen, 2015. "3D numerical analysis of exhaust flow inside a fin-and-tube evaporator used in engine waste heat recovery," Energy, Elsevier, vol. 82(C), pages 800-812.
    12. Alvi, Jahan Zeb & Feng, Yongqiang & Wang, Qian & Imran, Muhammad & Pei, Gang, 2021. "Effect of phase change materials on the performance of direct vapor generation solar organic Rankine cycle system," Energy, Elsevier, vol. 223(C).
    13. Ouyang, Tiancheng & Wang, Zhiping & Wang, Geng & Zhao, Zhongkai & Xie, Shutao & Li, Xiaoqing, 2021. "Advanced thermo-economic scheme and multi-objective optimization for exploiting the waste heat potentiality of marine natural gas engine," Energy, Elsevier, vol. 236(C).
    14. Long Lyu & Wu Chen & Ankang Kan & Yuan Zhang & Song Xue & Jingbin Zeng, 2022. "Investigation of a Dual-Loop ORC for the Waste Heat Recovery of a Marine Main Engine," Energies, MDPI, vol. 15(22), pages 1-22, November.
    15. Chen, Zhidong & Su, Chao & Wu, Zexuan & Wang, Weijia & Chen, Lei & Yang, Lijun & Kong, Yanqiang & Du, Xiaoze, 2023. "Operation strategy and performance analyses of a distributed energy system incorporating concentrating PV/T and air source heat pump for heating supply," Applied Energy, Elsevier, vol. 341(C).
    16. Lecompte, S. & Huisseune, H. & van den Broek, M. & De Paepe, M., 2015. "Methodical thermodynamic analysis and regression models of organic Rankine cycle architectures for waste heat recovery," Energy, Elsevier, vol. 87(C), pages 60-76.
    17. Piotr Kolasiński, 2019. "Application of the Multi-Vane Expanders in ORC Systems—A Review on the Experimental and Modeling Research Activities," Energies, MDPI, vol. 12(15), pages 1-26, August.
    18. Eyidogan, Muharrem & Canka Kilic, Fatma & Kaya, Durmus & Coban, Volkan & Cagman, Selman, 2016. "Investigation of Organic Rankine Cycle (ORC) technologies in Turkey from the technical and economic point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 885-895.
    19. Yang, Fubin & Cho, Heejin & Zhang, Hongguang & Zhang, Jian, 2017. "Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery," Applied Energy, Elsevier, vol. 205(C), pages 1100-1118.
    20. Li, Jing & Alvi, Jahan Zeb & Pei, Gang & Su, Yuehong & Li, Pengcheng & Gao, Guangtao & Ji, Jie, 2016. "Modelling of organic Rankine cycle efficiency with respect to the equivalent hot side temperature," Energy, Elsevier, vol. 115(P1), pages 668-683.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7818-:d:1289437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.