IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i23p7805-d1288735.html
   My bibliography  Save this article

Joint Multi-Objective Allocation of Parking Lots and DERs in Active Distribution Network Considering Demand Response Programs

Author

Listed:
  • Leila Bagherzadeh

    (Department of Electrical Engineering, Laval University, Quebec, QC G1V 0A6, Canada)

  • Innocent Kamwa

    (Department of Electrical Engineering, Laval University, Quebec, QC G1V 0A6, Canada)

Abstract

Renewable energy sources (RESs) and electric vehicles (EVs) have been introduced as efficient technologies to address environmentally friendly and sustainable energy sources. However, the widespread integration of distributed renewable sources into the power grid and the growing adoption of EVs pose new challenges for distribution network operators. These challenges necessitate careful management to mitigate their impacts, particularly in meeting the additional demand arising from EV charging. To achieve these targets, it is necessary to strategically integrate RESs and EVs. This study focuses on the optimal allocation and energy management of distributed energy resources (DERs) and electric vehicle parking lots (EVPLs), taking into account the inherent uncertainty in the output power of these resources. Notably, parking lots (PLs) utilize vehicle-to-grid (V2G) technology of EVs and aggregate and inject their power into the distribution system. Therefore, EVs as a motion type of energy storage system play a significant role, especially in the on-peak hours. The optimization problem is addressed using the salp swarm algorithm (SSA) while adhering to operational constraints related to the power system, as well as both DERs and EVPLs. The main goal is to simultaneously enhance the technical, economic, and environmental performance of the system, by solving a multi-objective optimization problem. The effectiveness of this approach is evaluated using the IEEE 33-bus distribution system, with the study considering five different scenarios. The simulation results reveal that the planned deployment of DERs, given their proximity to the load centers, has effectively mitigated the overload impacts resulting from EVs’ charging. Furthermore, the implementation of a demand response program (DRP), cooperatively with the aforementioned resources, has significantly improved all key operating indicators of the system.

Suggested Citation

  • Leila Bagherzadeh & Innocent Kamwa, 2023. "Joint Multi-Objective Allocation of Parking Lots and DERs in Active Distribution Network Considering Demand Response Programs," Energies, MDPI, vol. 16(23), pages 1-37, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7805-:d:1288735
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/23/7805/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/23/7805/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Bingxu & Duan, Pengfei & Fen, Mengdan & Xue, Qingwen & Hua, Jing & Yang, Zhuoqiang, 2023. "Optimal operation of distribution networks and multiple community energy prosumers based on mixed game theory," Energy, Elsevier, vol. 278(PB).
    2. Innocent Kamwa & Leila Bagherzadeh & Atieh Delavari, 2023. "Integrated Demand Response Programs in Energy Hubs: A Review of Applications, Classifications, Models and Future Directions," Energies, MDPI, vol. 16(11), pages 1-21, May.
    3. Kandil, Sarah M. & Farag, Hany E.Z. & Shaaban, Mostafa F. & El-Sharafy, M. Zaki, 2018. "A combined resource allocation framework for PEVs charging stations, renewable energy resources and distributed energy storage systems," Energy, Elsevier, vol. 143(C), pages 961-972.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Félix González & Paul Arévalo & Luis Ramirez, 2025. "Game Theory and Robust Predictive Control for Peer-to-Peer Energy Management: A Pathway to a Low-Carbon Economy," Sustainability, MDPI, vol. 17(5), pages 1-23, February.
    2. Luo, Lizi & Wu, Zhi & Gu, Wei & Huang, He & Gao, Song & Han, Jun, 2020. "Coordinated allocation of distributed generation resources and electric vehicle charging stations in distribution systems with vehicle-to-grid interaction," Energy, Elsevier, vol. 192(C).
    3. Yang, Yuyan & Xu, Xiao & Pan, Li & Liu, Junyong & Liu, Jichun & Hu, Weihao, 2024. "Distributed prosumer trading in the electricity and carbon markets considering user utility," Renewable Energy, Elsevier, vol. 228(C).
    4. Ali Darudi & Hannes Weigt, 2024. "Review and Assessment of Decarbonized Future Electricity Markets," Energies, MDPI, vol. 17(18), pages 1-38, September.
    5. Zhao, Wenna & Ma, Kai & Yang, Jie & Guo, Shiliang, 2024. "A multi-time scale demand response scheme based on noncooperative game for economic operation of industrial park," Energy, Elsevier, vol. 302(C).
    6. Li, Rui & Wang, Wei & Wu, Xuezhi & Tang, Fen & Chen, Zhe, 2019. "Cooperative planning model of renewable energy sources and energy storage units in active distribution systems: A bi-level model and Pareto analysis," Energy, Elsevier, vol. 168(C), pages 30-42.
    7. Suryakiran, B.V. & Nizami, Sohrab & Verma, Ashu & Saha, Tapan Kumar & Mishra, Sukumar, 2023. "A DSO-based day-ahead market mechanism for optimal operational planning of active distribution network," Energy, Elsevier, vol. 282(C).
    8. Gianluca Carraro & Enrico Dal Cin & Sergio Rech, 2024. "Integrating Energy Generation and Demand in the Design and Operation Optimization of Energy Communities," Energies, MDPI, vol. 17(24), pages 1-20, December.
    9. Luo, Lizi & Gu, Wei & Wu, Zhi & Zhou, Suyang, 2019. "Joint planning of distributed generation and electric vehicle charging stations considering real-time charging navigation," Applied Energy, Elsevier, vol. 242(C), pages 1274-1284.
    10. Eltoumi, Fouad M. & Becherif, Mohamed & Djerdir, Abdesslem & Ramadan, Haitham.S., 2021. "The key issues of electric vehicle charging via hybrid power sources: Techno-economic viability, analysis, and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    11. Li, Kang & Duan, Pengfei & Cao, Xiaodong & Cheng, Yuanda & Zhao, Bingxu & Xue, Qingwen & Feng, Mengdan, 2024. "A multi-energy load forecasting method based on complementary ensemble empirical model decomposition and composite evaluation factor reconstruction," Applied Energy, Elsevier, vol. 365(C).
    12. Mark Kipngetich Kiptoo & Oludamilare Bode Adewuyi & Masahiro Furukakoi & Paras Mandal & Tomonobu Senjyu, 2023. "Integrated Multi-Criteria Planning for Resilient Renewable Energy-Based Microgrid Considering Advanced Demand Response and Uncertainty," Energies, MDPI, vol. 16(19), pages 1-25, September.
    13. Lu, Xiaoxing & Li, Kangping & Xu, Hanchen & Wang, Fei & Zhou, Zhenyu & Zhang, Yagang, 2020. "Fundamentals and business model for resource aggregator of demand response in electricity markets," Energy, Elsevier, vol. 204(C).
    14. Elio Chiodo & Maurizio Fantauzzi & Davide Lauria & Fabio Mottola, 2018. "A Probabilistic Approach for the Optimal Sizing of Storage Devices to Increase the Penetration of Plug-in Electric Vehicles in Direct Current Networks," Energies, MDPI, vol. 11(5), pages 1-20, May.
    15. Gurpreet Singh & Matilde D’Arpino & Terence Goveas, 2024. "A Techno-Economic Assessment of DC Fast-Charging Stations with Storage, Renewable Resources and Low-Power Grid Connection," Energies, MDPI, vol. 17(16), pages 1-26, August.
    16. Zhao, Bingxu & Cao, Xiaodong & Duan, Pengfei, 2024. "Cooperative operation of multiple low-carbon microgrids: An optimization study addressing gaming fraud and multiple uncertainties," Energy, Elsevier, vol. 297(C).
    17. Meng, Linghao & Li, Mei & Yang, Hongzhi, 2024. "Enhancing energy efficiency in distributed systems with hybrid energy storage," Energy, Elsevier, vol. 305(C).
    18. Wang, Yi & Jin, Zikang & Liang, Jing & Li, Zhongwen & Dinavahi, Venkata & Liang, Jun, 2024. "Low-carbon optimal scheduling of park-integrated energy system based on bidirectional Stackelberg-Nash game theory," Energy, Elsevier, vol. 305(C).
    19. Piotr F. Borowski, 2024. "Innovative Solutions for the Future Development of the Energy Sector," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 297-307.
    20. Ibrahim, Nurul Nadia & Jamian, Jasrul Jamani & Md Rasid, Madihah, 2024. "Optimal multi-objective sizing of renewable energy sources and battery energy storage systems for formation of a multi-microgrid system considering diverse load patterns," Energy, Elsevier, vol. 304(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7805-:d:1288735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.