IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i23p7791-d1288390.html
   My bibliography  Save this article

Optimized Dispatch of Regional Integrated Energy System Considering Wind Power Consumption in Low-Temperature Environment

Author

Listed:
  • Liangkai Li

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China)

  • Jingguang Huang

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China)

  • Zhenxing Li

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China)

  • Hao Qi

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China)

Abstract

The wind abandonment phenomenon of cogeneration units in regional integrated energy systems (RIES) under the operation mode of “heat for electricity” and the improvement in the operation efficiency of the energy storage system under a low-temperature environment are problems that need to be solved urgently. To this end, a regional integrated energy system optimization scheduling method based on fine energy storage and wind power consumption is proposed in the paper. First, a fine energy storage model more adapted to a low-temperature environment is established on the power side to accurately simulate the actual working state of the energy storage components and quantify the uncertainty of the wind power output using the conditional value-at-risk (CVaR) theory. Then, a combined heat and power demand response mechanism is introduced on the load side to reduce the peak-to-valley difference in the heat and power loads, it is realized to promote the system’s consumption of wind power without increasing the transmission power of the contact line. Finally, the example is solved on the MATLAB platform with the objective of minimizing the total cost of the RIES optimal dispatch. The simulation results show that the proposed model is not only more adaptable to a low-temperature environment compared with the traditional model but also reduces the overall cost of the system by 2.58% while realizing the complete consumption of wind power. This innovative study provides a feasible and efficient solution to improve the performance of integrated energy systems, especially the operation capability in extreme environments.

Suggested Citation

  • Liangkai Li & Jingguang Huang & Zhenxing Li & Hao Qi, 2023. "Optimized Dispatch of Regional Integrated Energy System Considering Wind Power Consumption in Low-Temperature Environment," Energies, MDPI, vol. 16(23), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7791-:d:1288390
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/23/7791/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/23/7791/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Jing & Wang, Xiaoying & Gu, Yujiong & Ma, Suxia, 2023. "A data-based day-ahead scheduling optimization approach for regional integrated energy systems with varying operating conditions," Energy, Elsevier, vol. 283(C).
    2. Wang, Yongli & Li, Fang & Yang, Jiale & Zhou, Minhan & Song, Fuhao & Zhang, Danyang & Xue, Lu & Zhu, Jinrong, 2020. "Demand response evaluation of RIES based on improved matter-element extension model," Energy, Elsevier, vol. 212(C).
    3. Wang, Yongli & Wang, Yudong & Huang, Yujing & Li, Fang & Zeng, Ming & Li, Jiapu & Wang, Xiaohai & Zhang, Fuwei, 2019. "Planning and operation method of the regional integrated energy system considering economy and environment," Energy, Elsevier, vol. 171(C), pages 731-750.
    4. Matjanov, Erkinjon, 2020. "Gas turbine efficiency enhancement using absorption chiller. Case study for Tashkent CHP," Energy, Elsevier, vol. 192(C).
    5. Zhang, Qunli & Zhang, Lin & Nie, Jinzhe & Li, Yinlong, 2017. "Techno-economic analysis of air source heat pump applied for space heating in northern China," Applied Energy, Elsevier, vol. 207(C), pages 533-542.
    6. Zhang, Yachao & Huang, Zhanghao & Zheng, Feng & Zhou, Rongyu & Le, Jian & An, Xueli, 2020. "Cooperative optimization scheduling of the electricity-gas coupled system considering wind power uncertainty via a decomposition-coordination framework," Energy, Elsevier, vol. 194(C).
    7. Stoyan Stoyanov & Svetlozar Rachev & Frank Fabozzi, 2013. "Sensitivity of portfolio VaR and CVaR to portfolio return characteristics," Annals of Operations Research, Springer, vol. 205(1), pages 169-187, May.
    8. Yang, Changhui & Meng, Chen & Zhou, Kaile, 2018. "Residential electricity pricing in China: The context of price-based demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2870-2878.
    9. Wang, Yongli & Huang, Yujing & Wang, Yudong & Zeng, Ming & Yu, Haiyang & Li, Fang & Zhang, Fuli, 2018. "Optimal scheduling of the RIES considering time-based demand response programs with energy price," Energy, Elsevier, vol. 164(C), pages 773-793.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Yuhui & Oko, Eni & Zhang, Junli & Shen, Jiong, 2024. "Distributed scheduling of integrated energy system considering the impacts of heating network and load on source-side components," Energy, Elsevier, vol. 313(C).
    2. Wang, Yongli & Ma, Yuze & Song, Fuhao & Ma, Yang & Qi, Chengyuan & Huang, Feifei & Xing, Juntai & Zhang, Fuwei, 2020. "Economic and efficient multi-objective operation optimization of integrated energy system considering electro-thermal demand response," Energy, Elsevier, vol. 205(C).
    3. Liu, Jizhen & Ma, Lifei & Wang, Qinghua, 2023. "Energy management method of integrated energy system based on collaborative optimization of distributed flexible resources," Energy, Elsevier, vol. 264(C).
    4. Xuemeng Zhao & Weilun Huang, 2024. "Global Geopolitical Changes and New/Renewable Energy Game," Energies, MDPI, vol. 17(16), pages 1-27, August.
    5. Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Zhang, Chonghui & Bai, Chen & Su, Weihua & Balezentis, Tomas, 2024. "The centralised data envelopment analysis model integrated with cost information and utility theory for power price setting under carbon peak strategy at the firm-level," Energy, Elsevier, vol. 292(C).
    7. Chiang, Thomas C., 2019. "Empirical analysis of intertemporal relations between downside risks and expected returns—Evidence from Asian markets," Research in International Business and Finance, Elsevier, vol. 47(C), pages 264-278.
    8. Guozhong Zheng & Wentao Bu, 2018. "Review of Heating Methods for Rural Houses in China," Energies, MDPI, vol. 11(12), pages 1-18, December.
    9. Liu, Zhi-Feng & Zhao, Shi-Xiang & Luo, Xing-Fu & Huang, Ya-He & Gu, Rui-Zheng & Li, Ji-Xiang & Li, Ling-Ling, 2025. "Two-layer energy dispatching and collaborative optimization of regional integrated energy system considering stakeholders game and flexible load management," Applied Energy, Elsevier, vol. 379(C).
    10. Wang, Yongli & Li, Jiapu & Wang, Shuo & Yang, Jiale & Qi, Chengyuan & Guo, Hongzhen & Liu, Ximei & Zhang, Hongqing, 2020. "Operational optimization of wastewater reuse integrated energy system," Energy, Elsevier, vol. 200(C).
    11. Lin, Edward M.H. & Sun, Edward W. & Yu, Min-Teh, 2020. "Behavioral data-driven analysis with Bayesian method for risk management of financial services," International Journal of Production Economics, Elsevier, vol. 228(C).
    12. Yuan, Zhipeng & Liu, Qi & Luo, Baojun & Li, Zhenming & Fu, Jianqin & Chen, Jingwei, 2018. "Thermodynamic analysis of different oil flooded compression enhanced vapor injection cycles," Energy, Elsevier, vol. 154(C), pages 553-560.
    13. Zhou, Chaohui & Ni, Long & Li, Jun & Lin, Zeri & Wang, Jun & Fu, Xuhui & Yao, Yang, 2019. "Air-source heat pump heating system with a new temperature and hydraulic-balance control strategy: A field experiment in a teaching building," Renewable Energy, Elsevier, vol. 141(C), pages 148-161.
    14. Zhao, Huiru & Li, Bingkang & Lu, Hao & Wang, Xuejie & Li, Hongze & Guo, Sen & Xue, Wanlei & Wang, Yuwei, 2022. "Economy-environment-energy performance evaluation of CCHP microgrid system: A hybrid multi-criteria decision-making method," Energy, Elsevier, vol. 240(C).
    15. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    16. Du, Mingxi & Wang, Xiaoge & Peng, Changhui & Shan, Yuli & Chen, Huai & Wang, Meng & Zhu, Qiuan, 2018. "Quantification and scenario analysis of CO2 emissions from the central heating supply system in China from 2006 to 2025," Applied Energy, Elsevier, vol. 225(C), pages 869-875.
    17. Ben Ameur, Hachmi & Ftiti, Zied & Louhichi, Waël & Yousfi, Mohamed, 2024. "Do green investments improve portfolio diversification? Evidence from mean conditional value-at-risk optimization," International Review of Financial Analysis, Elsevier, vol. 94(C).
    18. Shi, Ruifeng & Li, Shaopeng & Zhang, Penghui & Lee, Kwang Y., 2020. "Integration of renewable energy sources and electric vehicles in V2G network with adjustable robust optimization," Renewable Energy, Elsevier, vol. 153(C), pages 1067-1080.
    19. Zhu, Yilin & Xu, Yujie & Chen, Haisheng & Guo, Huan & Zhang, Hualiang & Zhou, Xuezhi & Shen, Haotian, 2023. "Optimal dispatch of a novel integrated energy system combined with multi-output organic Rankine cycle and hybrid energy storage," Applied Energy, Elsevier, vol. 343(C).
    20. Yin, Linfei & Zhang, Bin, 2023. "Relaxed deep generative adversarial networks for real-time economic smart generation dispatch and control of integrated energy systems," Applied Energy, Elsevier, vol. 330(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7791-:d:1288390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.