IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i22p7666-d1283850.html
   My bibliography  Save this article

Rollover Prevention Model for Stratified Liquefied Natural Gas in Storage Tanks

Author

Listed:
  • Tomasz Włodek

    (Natural Gas Engineering Department, Drilling, Oil and Gas Faculty, AGH University of Krakow, 30 Mickiewicza Av., 30-059 Krakow, Poland)

  • Mariusz Łaciak

    (Natural Gas Engineering Department, Drilling, Oil and Gas Faculty, AGH University of Krakow, 30 Mickiewicza Av., 30-059 Krakow, Poland)

Abstract

At least 24 liquefied natural gas (LNG) rollover incidents have been reported since 1960. During rollover, because of the heat ingress through the tank walls, a stratified LNG may be suddenly homogenized while releasing massive amounts of vapor. It can result in an overpressure in the tank and significant amounts of potentially explosive LNG vapor being vented out. Both of these factors represent considerable hazards. Rollover is a physical mixing process in a single tank with two or more different cells of LNG of different compositions, temperatures, and densities that can manifest in large boil-off rates. It can exceed venting equipment capacities, and vapor pressure in tank increases rapidly and in extreme cases can lead to tank damage. This paper presents numerical approach for determination of time of rollover occurrence in storage tank. The presented model is based on the energy balance of the stratified cryogenic liquid and the gas phase as separate three thermodynamic systems in the storage tank. As a result of proposed model, for the adopted assumptions and cylindrical tank volume of 78,500 m 3 , the approximate time of the rollover occurrence was determined for two cases. In the first case, for heavier LNG, the rollover phenomenon will occur 193.25 h after the start of the calculations from the assumed initial conditions. In the second case, for light LNG with a higher initial liquid level in the tank, the rollover will occur after 150.25 h.

Suggested Citation

  • Tomasz Włodek & Mariusz Łaciak, 2023. "Rollover Prevention Model for Stratified Liquefied Natural Gas in Storage Tanks," Energies, MDPI, vol. 16(22), pages 1-23, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7666-:d:1283850
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/22/7666/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/22/7666/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miana, Mario & Hoyo, Rafael del & Rodrigálvarez, Vega & Valdés, José Ramón & Llorens, Raúl, 2010. "Calculation models for prediction of Liquefied Natural Gas (LNG) ageing during ship transportation," Applied Energy, Elsevier, vol. 87(5), pages 1687-1700, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohd Shariq Khan & Muhammad Abdul Qyyum & Wahid Ali & Aref Wazwaz & Khursheed B. Ansari & Moonyong Lee, 2020. "Energy Saving through Efficient BOG Prediction and Impact of Static Boil-off-Rate in Full Containment-Type LNG Storage Tank," Energies, MDPI, vol. 13(21), pages 1-14, October.
    2. Fernández, Ignacio Arias & Gómez, Manuel Romero & Gómez, Javier Romero & Insua, Álvaro Baaliña, 2017. "Review of propulsion systems on LNG carriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1395-1411.
    3. Duan, Zhongdi & Wang, Jianhu & Yuan, Yuchao & Tang, Wenyong & Xue, Hongxiang, 2023. "Near-wall thermal regulation for cryogenic storage by adsorbent coating: Modelling and pore-scale investigation," Applied Energy, Elsevier, vol. 349(C).
    4. Kumar, Satish & Kwon, Hyouk-Tae & Choi, Kwang-Ho & Lim, Wonsub & Cho, Jae Hyun & Tak, Kyungjae & Moon, Il, 2011. "LNG: An eco-friendly cryogenic fuel for sustainable development," Applied Energy, Elsevier, vol. 88(12), pages 4264-4273.
    5. Huerta, Felipe & Vesovic, Velisa, 2019. "A realistic vapour phase heat transfer model for the weathering of LNG stored in large tanks," Energy, Elsevier, vol. 174(C), pages 280-291.
    6. Migliore, Calogero & Salehi, Amin & Vesovic, Velisa, 2017. "A non-equilibrium approach to modelling the weathering of stored Liquefied Natural Gas (LNG)," Energy, Elsevier, vol. 124(C), pages 684-692.
    7. Marques, C.H. & Belchior, C.R.P. & Caprace, J.-D., 2018. "Optimising the engine-propeller matching for a liquefied natural gas carrier under rough weather," Applied Energy, Elsevier, vol. 232(C), pages 187-196.
    8. Thiaucourt, Jonas & Marty, Pierre & Hetet, Jean-François, 2020. "Impact of natural gas quality on engine performances during a voyage using a thermodynamic fuel system model," Energy, Elsevier, vol. 197(C).
    9. Jung, Byungchan & Park, Kiheum & Sohn, Younghoon & Oh, Juyoung & Lee, Joon Chae & Jung, Hae Won & Seo, Yutaek & Lim, Youngsub, 2022. "Prediction model of LNG weathering using net mass and heat transfer," Energy, Elsevier, vol. 247(C).
    10. Perez, Fernando & Al Ghafri, Saif Z.S. & Gallagher, Liam & Siahvashi, Arman & Ryu, Yonghee & Kim, Sungwoo & Kim, Sung Gyu & Johns, Michael L. & May, Eric F., 2021. "Measurements of boil-off gas and stratification in cryogenic liquid nitrogen with implications for the storage and transport of liquefied natural gas," Energy, Elsevier, vol. 222(C).
    11. Querol, E. & Gonzalez-Regueral, B. & García-Torrent, J. & Ramos, Alberto, 2011. "Available power generation cycles to be coupled with the liquid natural gas (LNG) vaporization process in a Spanish LNG terminal," Applied Energy, Elsevier, vol. 88(7), pages 2382-2390, July.
    12. Kayal, Sibnath & Sun, Baichuan & Chakraborty, Anutosh, 2015. "Study of metal-organic framework MIL-101(Cr) for natural gas (methane) storage and compare with other MOFs (metal-organic frameworks)," Energy, Elsevier, vol. 91(C), pages 772-781.
    13. Forouzanfar, Mehdi & Doustmohammadi, A. & Hasanzadeh, Samira & Shakouri G, H., 2012. "Transport energy demand forecast using multi-level genetic programming," Applied Energy, Elsevier, vol. 91(1), pages 496-503.
    14. Kalikatzarakis, Miltiadis & Theotokatos, Gerasimos & Coraddu, Andrea & Sayan, Paul & Wong, Seng Yew, 2022. "Model based analysis of the boil-off gas management and control for LNG fuelled vessels," Energy, Elsevier, vol. 251(C).
    15. Kwak, Dong-Hun & Heo, Jeong-Ho & Park, Seung-Ha & Seo, Seok-Jang & Kim, Jin-Kuk, 2018. "Energy-efficient design and optimization of boil-off gas (BOG) re-liquefaction process for liquefied natural gas (LNG)-fuelled ship," Energy, Elsevier, vol. 148(C), pages 915-929.
    16. Peng Yu & Yuanchao Yin & Qianjin Yue & Shanghua Wu, 2022. "Experimental Study of Ship Motion Effect on Pressurization and Holding Time of Tank Containers during Marine Transportation," Sustainability, MDPI, vol. 14(6), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7666-:d:1283850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.