IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i22p7591-d1280811.html
   My bibliography  Save this article

Methodology for the Optimization of a Novel Hydro Turbine with a Case Study

Author

Listed:
  • George Aggidis

    (School of Engineering, Lancaster University, Lancaster LA1 4YW, UK)

  • Audrius Židonis

    (School of Engineering, Lancaster University, Lancaster LA1 4YW, UK)

  • Luke Burtenshaw

    (School of Engineering, Lancaster University, Lancaster LA1 4YW, UK)

  • Marc Dubois

    (School of Engineering, Lancaster University, Lancaster LA1 4YW, UK)

  • Stephen Orritt

    (School of Engineering, Lancaster University, Lancaster LA1 4YW, UK)

  • Dominic Pickston

    (School of Engineering, Lancaster University, Lancaster LA1 4YW, UK)

  • George Prigov

    (School of Engineering, Lancaster University, Lancaster LA1 4YW, UK)

  • Luke Wilmot

    (School of Engineering, Lancaster University, Lancaster LA1 4YW, UK)

Abstract

As the world strives towards its goal of net zero carbon emissions, it is vital that renewable energy sources be optimized to their full potential. A key source of renewable energy is hydropower, more specifically, the Pelton turbine—a highly efficient, widely used, and well-researched piece of turbomachinery. This review proposes a methodology that will aid future research on Pelton turbines and compares relevant literature to assess effective ways to improve upon the Pelton design. The methodology evaluates how both experimental and computational analysis can be utilized in parallel to accelerate the progress of research, giving an example of the adopted workflow presented in a case study. The literature study in this paper focuses on how a variety of bucket parameters can be optimized to improve the efficiency of a Pelton turbine and analyses the accuracy of CFD compared to experimental data from previous research involving Pelton and Turgo turbines. The findings revealed that a water exit angle of 169°–170° proved to be optimal, while modifications to the depth and internal geometry of the bucket seemed to have the greatest impact on the efficiency of Pelton turbines. A short discussion on the potential for utilizing the strengths of both Pelton and Turgo turbines is included to highlight the need for further research in this field. A combination of both simulation and experimental results running in parallel with each other during optimization is found to be beneficial due to advancements in rapid prototyping. By comparing experimental data with simulated data throughout the optimization process, mistakes can be realized early on in the process, reducing time in later stages. Having experimental data throughout the turbine’s development aids the computational process by highlighting issues that may have been missed when only using CFD.

Suggested Citation

  • George Aggidis & Audrius Židonis & Luke Burtenshaw & Marc Dubois & Stephen Orritt & Dominic Pickston & George Prigov & Luke Wilmot, 2023. "Methodology for the Optimization of a Novel Hydro Turbine with a Case Study," Energies, MDPI, vol. 16(22), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7591-:d:1280811
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/22/7591/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/22/7591/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Benzon, D.S. & Aggidis, G.A. & Anagnostopoulos, J.S., 2016. "Development of the Turgo Impulse turbine: Past and present," Applied Energy, Elsevier, vol. 166(C), pages 1-18.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joe Butchers & Shaun Benzon & Sam Williamson & Julian Booker & George Aggidis, 2021. "A Rationalised CFD Design Methodology for Turgo Turbines to Enable Local Manufacture in the Global South," Energies, MDPI, vol. 14(19), pages 1-23, October.
    2. Zhou, Daqing & Gui, Jia & Deng, Zhiqun Daniel & Chen, Huixiang & Yu, Yunyun & Yu, An & Yang, Chunxia, 2019. "Development of an ultra-low head siphon hydro turbine using computational fluid dynamics," Energy, Elsevier, vol. 181(C), pages 43-50.
    3. Lin, Tzu-Yuan & Ko, Chia-Yu & Chen, Shih-Jhe & Tsai, Guo Chung & Tsai, Hsieh-Chen, 2022. "A novel total-flow geothermal power generator using Turgo turbine: Design and field tests," Renewable Energy, Elsevier, vol. 186(C), pages 562-572.
    4. Du, Jiyun & Shen, Zhicheng & Yang, Hongxing, 2018. "Effects of different block designs on the performance of inline cross-flow turbines in urban water mains," Applied Energy, Elsevier, vol. 228(C), pages 97-107.
    5. Renzi, Massimiliano & Rudolf, Pavel & Štefan, David & Nigro, Alessandra & Rossi, Mosè, 2019. "Installation of an axial Pump-as-Turbine (PaT) in a wastewater sewer of an oil refinery: A case study," Applied Energy, Elsevier, vol. 250(C), pages 665-676.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7591-:d:1280811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.