IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7210-d1265559.html
   My bibliography  Save this article

Explainable Approaches for Forecasting Building Electricity Consumption

Author

Listed:
  • Nikos Sakkas

    (Apintech Ltd., POLIS-21 Group, 4004 Limassol, Cyprus)

  • Sofia Yfanti

    (Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece)

  • Pooja Shah

    (Apintech Ltd., POLIS-21 Group, 4004 Limassol, Cyprus)

  • Nikitas Sakkas

    (Apintech Ltd., POLIS-21 Group, 4004 Limassol, Cyprus)

  • Christina Chaniotakis

    (Apintech Ltd., POLIS-21 Group, 4004 Limassol, Cyprus)

  • Costas Daskalakis

    (Apintech Ltd., POLIS-21 Group, 4004 Limassol, Cyprus)

  • Eduard Barbu

    (Institute of Computer Science, University of Tartu, Narva mnt 18, 51009 Tartu, Estonia)

  • Marharyta Domnich

    (Institute of Computer Science, University of Tartu, Narva mnt 18, 51009 Tartu, Estonia)

Abstract

Building electric energy is characterized by a significant increase in its uses (e.g., vehicle charging), a rapidly declining cost of all related data collection, and a proliferation of smart grid concepts, including diverse and flexible electricity pricing schemes. Not surprisingly, an increased number of approaches have been proposed for its modeling and forecasting. In this work, we place our emphasis on three forecasting-related issues. First, we look at the forecasting explainability, that is, the ability to understand and explain to the user what shapes the forecast. To this extent, we rely on concepts and approaches that are inherently explainable, such as the evolutionary approach of genetic programming (GP) and its associated symbolic expressions, as well as the so-called SHAP (SHapley Additive eXplanations) values, which is a well-established model agnostic approach for explainability, especially in terms of feature importance. Second, we investigate the impact of the training timeframe on the forecasting accuracy; this is driven by the realization that fast training would allow for faster deployment of forecasting in real-life solutions. And third, we explore the concept of counterfactual analysis on actionable features, that is, features that the user can really act upon and which therefore present an inherent advantage when it comes to decision support. We have found that SHAP values can provide important insights into the model explainability. In our analysis, GP models demonstrated superior performance compared to neural network-based models (with a 20–30% reduction in Root Mean Square Error (RMSE)) and time series models (with a 20–40% lower RMSE), but a rather questionable potential to produce crisp and insightful symbolic expressions, allowing a better insight into the model performance. We have also found and reported here on an important potential, especially for practical, decision support, of counterfactuals built on actionable features, and short training timeframes.

Suggested Citation

  • Nikos Sakkas & Sofia Yfanti & Pooja Shah & Nikitas Sakkas & Christina Chaniotakis & Costas Daskalakis & Eduard Barbu & Marharyta Domnich, 2023. "Explainable Approaches for Forecasting Building Electricity Consumption," Energies, MDPI, vol. 16(20), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7210-:d:1265559
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7210/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7210/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Darbellay, Georges A. & Slama, Marek, 2000. "Forecasting the short-term demand for electricity: Do neural networks stand a better chance?," International Journal of Forecasting, Elsevier, vol. 16(1), pages 71-83.
    2. S. Borenstein, 2013. "Effective and Equitable Adoption of Opt-In Residential Dynamic Electricity Pricing," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 42(2), pages 127-160, March.
    3. Ramos, Paulo Vitor B. & Villela, Saulo Moraes & Silva, Walquiria N. & Dias, Bruno H., 2023. "Residential energy consumption forecasting using deep learning models," Applied Energy, Elsevier, vol. 350(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Gambardella & Michael Pahle & Wolf-Peter Schill, 2016. "Do Benefits from Dynamic Tariffing Rise? Welfare Effects of Real-Time Pricing under Carbon-Tax-Induced Variable Renewable Energy Supply," Discussion Papers of DIW Berlin 1621, DIW Berlin, German Institute for Economic Research.
    2. Hu, Junjie & López Cabrera, Brenda & Melzer, Awdesch, 2021. "Advanced statistical learning on short term load process forecasting," IRTG 1792 Discussion Papers 2021-020, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    3. Olson, Dennis & Mossman, Charles, 2003. "Neural network forecasts of Canadian stock returns using accounting ratios," International Journal of Forecasting, Elsevier, vol. 19(3), pages 453-465.
    4. Gambardella, Christian & Pahle, Michael, 2018. "Time-varying electricity pricing and consumer heterogeneity: Welfare and distributional effects with variable renewable supply," Energy Economics, Elsevier, vol. 76(C), pages 257-273.
    5. Rocha Souza, Leonardo & Jorge Soares, Lacir, 2007. "Electricity rationing and public response," Energy Economics, Elsevier, vol. 29(2), pages 296-311, March.
    6. Severin Borenstein & James Bushnell, 2015. "The US Electricity Industry After 20 Years of Restructuring," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 437-463, August.
    7. Cancelo, José Ramón & Espasa, Antoni & Grafe, Rosmarie, 2008. "Forecasting the electricity load from one day to one week ahead for the Spanish system operator," International Journal of Forecasting, Elsevier, vol. 24(4), pages 588-602.
    8. Amaral, Luiz Felipe & Souza, Reinaldo Castro & Stevenson, Maxwell, 2008. "A smooth transition periodic autoregressive (STPAR) model for short-term load forecasting," International Journal of Forecasting, Elsevier, vol. 24(4), pages 603-615.
    9. Ohtsuka, Yoshihiro & Oga, Takashi & Kakamu, Kazuhiko, 2010. "Forecasting electricity demand in Japan: A Bayesian spatial autoregressive ARMA approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2721-2735, November.
    10. Soares, Lacir Jorge & Souza, Leonardo Rocha, 2006. "Forecasting electricity demand using generalized long memory," International Journal of Forecasting, Elsevier, vol. 22(1), pages 17-28.
    11. Simshauser, Paul & Whish-Wilson, Patrick, 2017. "Price discrimination in Australia's retail electricity markets: An analysis of Victoria & Southeast Queensland," Energy Economics, Elsevier, vol. 62(C), pages 92-103.
    12. Jaume Rosselló Nadal & Mohcine Bakhat, 2009. "A new approach to estimating tourism-induced electricity consumption," CRE Working Papers (Documents de treball del CRE) 2009/6, Centre de Recerca Econòmica (UIB ·"Sa Nostra").
    13. Mak Kaboudan, 2006. "Computational Forecasting of Wavelet-converted Monthly Sunspot Numbers," Journal of Applied Statistics, Taylor & Francis Journals, vol. 33(9), pages 925-941.
    14. repec:qut:auncer:wp103 is not listed on IDEAS
    15. Simshauser, Paul, 2018. "Price discrimination and the modes of failure in deregulated retail electricity markets," Energy Economics, Elsevier, vol. 75(C), pages 54-70.
    16. Julien Boelaert, 2013. "A Neural Network Demand System," Documents de travail du Centre d'Economie de la Sorbonne 13081, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    17. Elamin, Niematallah & Fukushige, Mototsugu, 2018. "Modeling and forecasting hourly electricity demand by SARIMAX with interactions," Energy, Elsevier, vol. 165(PB), pages 257-268.
    18. Koichiro Ito & Takanori Ida & Makoto Tanaka, 2023. "Selection on Welfare Gains: Experimental Evidence from Electricity Plan Choice," American Economic Review, American Economic Association, vol. 113(11), pages 2937-2973, November.
    19. L. (Lisa B.) Ryan & Sarah La Monaca & Linda Mastrandrea & Petr Spodniak, 2018. "Harnessing Electricity Retail Tariffs to Support Climate Change Policy," Working Papers 201822, School of Economics, University College Dublin.
    20. Martin-Rodriguez, Gloria & Caceres-Hernandez, Jose Juan, 2005. "Modelling the hourly Spanish electricity demand," Economic Modelling, Elsevier, vol. 22(3), pages 551-569, May.
    21. Pedregal, Diego J. & Young, Peter C., 2006. "Modulated cycles, an approach to modelling periodic components from rapidly sampled data," International Journal of Forecasting, Elsevier, vol. 22(1), pages 181-194.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7210-:d:1265559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.