IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7172-d1264132.html
   My bibliography  Save this article

Development of an Optimal Port Crane Trajectory for Reduced Energy Consumption

Author

Listed:
  • Rofhiwa Lutendo Edward Takalani

    (School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg 2050, South Africa)

  • Lesedi Masisi

    (School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg 2050, South Africa)

Abstract

This paper is concerned with the development of an optimal load-handling trajectory for port cranes. The objective is to minimize load cycle time and reduce energy consumption. Energetic macroscopic representation formalism is used to model a port crane load-handling mechanism. The crane model developed includes the mathematical model, the crane’s local control system, and a MATLAB/Simulink model for simulation. The particle swarm optimization algorithm is used to find the set of pareto optimal crane trajectories given the variation in crane size, ship size, and wind speed. Experimental validation of the crane model is conducted by comparing it with a real-world crane. Simulation results show that the optimal crane load trajectory is 38% faster and more productive than the nonoptimal crane load trajectory. Furthermore, the results show that the optimal trajectory reduces the cranes’ peak power and energy consumption by 36% when compared with the nonoptimal trajectory.

Suggested Citation

  • Rofhiwa Lutendo Edward Takalani & Lesedi Masisi, 2023. "Development of an Optimal Port Crane Trajectory for Reduced Energy Consumption," Energies, MDPI, vol. 16(20), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7172-:d:1264132
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7172/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7172/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Castaings, Ali & Lhomme, Walter & Trigui, Rochdi & Bouscayrol, Alain, 2016. "Comparison of energy management strategies of a battery/supercapacitors system for electric vehicle under real-time constraints," Applied Energy, Elsevier, vol. 163(C), pages 190-200.
    2. Dongping Song, 2021. "A Literature Review, Container Shipping Supply Chain: Planning Problems and Research Opportunities," Logistics, MDPI, vol. 5(2), pages 1-26, June.
    3. Sun, Xilei & Fu, Jianqin & Yang, Huiyong & Xie, Mingke & Liu, Jingping, 2023. "An energy management strategy for plug-in hybrid electric vehicles based on deep learning and improved model predictive control," Energy, Elsevier, vol. 269(C).
    4. Vichos, Emmanouil & Sifakis, Nikolaos & Tsoutsos, Theocharis, 2022. "Challenges of integrating hydrogen energy storage systems into nearly zero-energy ports," Energy, Elsevier, vol. 241(C).
    5. Iris, Çağatay & Lam, Jasmine Siu Lee, 2019. "A review of energy efficiency in ports: Operational strategies, technologies and energy management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 170-182.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariusz Brzeziński & Dariusz Pyza & Joanna Archutowska & Michał Budzik, 2024. "Method of Estimating Energy Consumption for Intermodal Terminal Loading System Design," Energies, MDPI, vol. 17(24), pages 1-35, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jinggai & Li, Huanhuan & Yang, Zaili & Ge, Ying-En, 2024. "Shore power for reduction of shipping emission in port: A bibliometric analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    2. Charalampos Platias & Dimitris Spyrou, 2023. "EU-Funded Energy-Related Projects for Sustainable Ports: Evidence from the Port of Piraeus," Sustainability, MDPI, vol. 15(5), pages 1-27, February.
    3. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Barbosa, Paulo Sérgio Franco, 2022. "Hydrogen Deep Ocean Link: a global sustainable interconnected energy grid," Energy, Elsevier, vol. 249(C).
    4. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    5. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
    6. Mpho J. Lencwe & Shyama P. Chowdhury & Thomas O. Olwal, 2018. "A Multi-Stage Approach to a Hybrid Lead Acid Battery and Supercapacitor System for Transport Vehicles," Energies, MDPI, vol. 11(11), pages 1-16, October.
    7. Ahmad Alzahrani & Senthil Kumar Ramu & Gunapriya Devarajan & Indragandhi Vairavasundaram & Subramaniyaswamy Vairavasundaram, 2022. "A Review on Hydrogen-Based Hybrid Microgrid System: Topologies for Hydrogen Energy Storage, Integration, and Energy Management with Solar and Wind Energy," Energies, MDPI, vol. 15(21), pages 1-32, October.
    8. Xiong, Rui & Duan, Yanzhou & Cao, Jiayi & Yu, Quanqing, 2018. "Battery and ultracapacitor in-the-loop approach to validate a real-time power management method for an all-climate electric vehicle," Applied Energy, Elsevier, vol. 217(C), pages 153-165.
    9. Martins, Flavio Pinheiro & De-León Almaraz, Sofía & Botelho Junior, Amilton Barbosa & Azzaro-Pantel, Catherine & Parikh, Priti, 2024. "Hydrogen and the sustainable development goals: Synergies and trade-offs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    10. Wang, Bin & Xu, Jun & Cao, Binggang & Ning, Bo, 2017. "Adaptive mode switch strategy based on simulated annealing optimization of a multi-mode hybrid energy storage system for electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 596-608.
    11. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    12. Haris, Muhammad & Hasan, Muhammad Noman & Qin, Shiyin, 2021. "Early and robust remaining useful life prediction of supercapacitors using BOHB optimized Deep Belief Network," Applied Energy, Elsevier, vol. 286(C).
    13. Jinyeong Lee & Kyungcheol Shin & Young-Min Wi, 2024. "Decentralized Operations of Industrial Complex Microgrids Considering Corporate Power Purchase Agreements for Renewable Energy 100% Initiatives in South Korea," Sustainability, MDPI, vol. 16(13), pages 1-23, June.
    14. Domenico Gattuso & Domenica Savia Pellicanò, 2023. "HUs Fleet Management in an Automated Container Port: Assessment by a Simulation Approach," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    15. Awab Baqar & Mamadou Baïlo Camara & Brayima Dakyo, 2022. "Energy Management in the Multi-Source Systems," Energies, MDPI, vol. 15(8), pages 1-4, April.
    16. Ang Yang & Xiangyu Meng & He He & Liang Wang & Jing Gao, 2022. "Towards Optimized ARMGs’ Low-Carbon Transition Investment Decision Based on Real Options," Energies, MDPI, vol. 15(14), pages 1-16, July.
    17. Minjeong Sim & Dongjun Suh & Marc-Oliver Otto, 2021. "Multi-Objective Particle Swarm Optimization-Based Decision Support Model for Integrating Renewable Energy Systems in a Korean Campus Building," Sustainability, MDPI, vol. 13(15), pages 1-18, August.
    18. Sun, Xilei & Fu, Jianqin, 2024. "Many-objective optimization of BEV design parameters based on gradient boosting decision tree models and the NSGA-III algorithm considering the ambient temperature," Energy, Elsevier, vol. 288(C).
    19. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2024. "A solar-assisted liquefied biomethane production by anaerobic digestion: Dynamic simulations for harbors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    20. Lopez Lopez, Guadalupe & Schacht Rodriguez, Ricardo & Alvarado, Victor M. & Gomez-Aguilar, J.F. & Mota, Juan E. & Sandoval, Cinda, 2017. "Hybrid PEMFC-supercapacitor system: Modeling and energy management in energetic macroscopic representation," Applied Energy, Elsevier, vol. 205(C), pages 1478-1494.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7172-:d:1264132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.