IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7150-d1262977.html
   My bibliography  Save this article

Operation of a Hybrid Energy Storage System Based on a Cascaded Multi-Output Multilevel Converter with a Carrier-Based Modulation Scheme

Author

Listed:
  • Fidel Figueroa

    (Department of Electrical Engineering, Centro de Energía, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile)

  • Ricardo Lizana Fuentes

    (Department of Electrical Engineering, Centro de Energía, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile)

  • Stefan M. Goetz

    (Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
    Department of Electrical Engineering, Duke University, Durham, NC 27710, USA)

  • Sebastian Rivera

    (Department of Electrical Engineering, Centro de Energía, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
    DCE&S Group, Department of Electrical Sustainable Energy, Delft University of Technology, 2628 CD Delft, The Netherlands)

Abstract

Hybrid Energy Storage Systems (HESSs) have gathered considerable interest due to their potential to achieve high energy and power density by integrating different storage technologies, such as batteries and capacitors, to name a few. Among the various topologies explored for HESSs, the multi-output multilevel converter stands out as a promising option, offering decoupled operation of the AC ports while maintaining an internal balance among the diverse storage units. In this paper, the operation and restrictions of a HESS based on a multi-output multilevel converter with a carrier-based modulation scheme are presented. The study provides compelling evidence of the correct operation of the proposed modulation scheme and highlights its advantages, including simplicity and stability.

Suggested Citation

  • Fidel Figueroa & Ricardo Lizana Fuentes & Stefan M. Goetz & Sebastian Rivera, 2023. "Operation of a Hybrid Energy Storage System Based on a Cascaded Multi-Output Multilevel Converter with a Carrier-Based Modulation Scheme," Energies, MDPI, vol. 16(20), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7150-:d:1262977
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7150/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7150/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Parra, David & Norman, Stuart A. & Walker, Gavin S. & Gillott, Mark, 2017. "Optimum community energy storage for renewable energy and demand load management," Applied Energy, Elsevier, vol. 200(C), pages 358-369.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pia Szichta & Ingela Tietze, 2020. "Sharing Economy in der Elektrizitätswirtschaft: Treiber und Hemmnisse [Title sharing economy in the electricity sector: drivers and barriers]," NachhaltigkeitsManagementForum | Sustainability Management Forum, Springer, vol. 28(3), pages 109-125, December.
    2. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
    3. Talaat, M. & Hatata, A.Y. & Alsayyari, Abdulaziz S. & Alblawi, Adel, 2020. "A smart load management system based on the grasshopper optimization algorithm using the under-frequency load shedding approach," Energy, Elsevier, vol. 190(C).
    4. Hafiz, Faeza & Rodrigo de Queiroz, Anderson & Fajri, Poria & Husain, Iqbal, 2019. "Energy management and optimal storage sizing for a shared community: A multi-stage stochastic programming approach," Applied Energy, Elsevier, vol. 236(C), pages 42-54.
    5. Silverman, Rochelle E. & Flores, Robert J. & Brouwer, Jack, 2020. "Energy and economic assessment of distributed renewable gas and electricity generation in a small disadvantaged urban community," Applied Energy, Elsevier, vol. 280(C).
    6. Fan, Feilong & Huang, Wentao & Tai, Nengling & Zheng, Xiaodong & Hu, Yan & Ma, Zhoujun, 2018. "A conditional depreciation balancing strategy for the equitable operation of extended hybrid energy storage systems," Applied Energy, Elsevier, vol. 228(C), pages 1937-1952.
    7. Abdullah M. Alabdullatif & Enrico H. Gerding & Alvaro Perez-Diaz, 2020. "Market Design and Trading Strategies for Community Energy Markets with Storage and Renewable Supply," Energies, MDPI, vol. 13(4), pages 1-31, February.
    8. Song, Chunhe & Jing, Wei & Zeng, Peng & Yu, Haibin & Rosenberg, Catherine, 2018. "Energy consumption analysis of residential swimming pools for peak load shaving," Applied Energy, Elsevier, vol. 220(C), pages 176-191.
    9. Obara, Shin'ya & Hamanaka, Ryo & El-Sayed, Abeer Galal, 2019. "Design methods for microgrids to address seasonal energy availability – A case study of proposed Showa Antarctic Station retrofits," Applied Energy, Elsevier, vol. 236(C), pages 711-727.
    10. Christian van Someren & Martien Visser & Han Slootweg, 2023. "Sizing Batteries for Power Flow Management in Distribution Grids: A Method to Compare Battery Capacities for Different Siting Configurations and Variable Power Flow Simultaneity," Energies, MDPI, vol. 16(22), pages 1-19, November.
    11. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    12. Müller, Simon C. & Welpe, Isabell M., 2018. "Sharing electricity storage at the community level: An empirical analysis of potential business models and barriers," Energy Policy, Elsevier, vol. 118(C), pages 492-503.
    13. Das, Choton K. & Bass, Octavian & Kothapalli, Ganesh & Mahmoud, Thair S. & Habibi, Daryoush, 2018. "Optimal placement of distributed energy storage systems in distribution networks using artificial bee colony algorithm," Applied Energy, Elsevier, vol. 232(C), pages 212-228.
    14. Xiaofeng Guo & Alain Pascal Goumba & Cheng Wang, 2019. "Comparison of Direct and Indirect Active Thermal Energy Storage Strategies for Large-Scale Solar Heating Systems," Energies, MDPI, vol. 12(10), pages 1-18, May.
    15. Mahdavi, Sajad & Hemmati, Reza & Jirdehi, Mehdi Ahmadi, 2018. "Two-level planning for coordination of energy storage systems and wind-solar-diesel units in active distribution networks," Energy, Elsevier, vol. 151(C), pages 954-965.
    16. Gährs, Swantje & Knoefel, Jan, 2020. "Stakeholder demands and regulatory framework for community energy storage with a focus on Germany," Energy Policy, Elsevier, vol. 144(C).
    17. Sturmberg, B.C.P. & Shaw, M.E. & Mediwaththe, C.P. & Ransan-Cooper, H. & Weise, B. & Thomas, M. & Blackhall, L., 2021. "A mutually beneficial approach to electricity network pricing in the presence of large amounts of solar power and community-scale energy storage," Energy Policy, Elsevier, vol. 159(C).
    18. Zhou, Yuan & Ma, Yanpeng & Wang, Jiangjiang & Lu, Shuaikang, 2021. "Collaborative planning of spatial layouts of distributed energy stations and networks: A case study," Energy, Elsevier, vol. 234(C).
    19. Luis Gabriel Marín & Mark Sumner & Diego Muñoz-Carpintero & Daniel Köbrich & Seksak Pholboon & Doris Sáez & Alfredo Núñez, 2019. "Hierarchical Energy Management System for Microgrid Operation Based on Robust Model Predictive Control," Energies, MDPI, vol. 12(23), pages 1-19, November.
    20. Scheller, Fabian & Burkhardt, Robert & Schwarzeit, Robert & McKenna, Russell & Bruckner, Thomas, 2020. "Competition between simultaneous demand-side flexibility options: the case of community electricity storage systems," Applied Energy, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7150-:d:1262977. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.