IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7088-d1259584.html
   My bibliography  Save this article

Performance Evaluation of an Occupancy-Based HVAC Control System in an Office Building

Author

Listed:
  • Guanjing Lin

    (Building Technology and Urban Systems Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
    Institute of Future Human Habitats, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China)

  • Armando Casillas

    (Building Technology and Urban Systems Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA)

  • Maggie Sheng

    (Building Technology and Urban Systems Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
    Electric Power Research Institute, Sunnyvale, CA 94090, USA)

  • Jessica Granderson

    (Building Technology and Urban Systems Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA)

Abstract

As new algorithms incorporate occupancy count information into more sophisticated HVAC control, these technologies offer great potential for reductions in energy costs while enhancing flexibility. This study presents results from a two-year field evaluation of an occupancy-based HVAC control system installed in an office building. Two wings on each of the building’s 2–11 floors were equipped with occupancy counters to learn occupancy patterns. In combination with proprietary machine learning algorithms and thermal modeling, the occupancy data were leveraged to implement optimized start, early closure, and adjustments to fan operation at the air handling unit (AHU) level. This study conducted a holistic evaluation of technical performance, cost-effectiveness analysis, and user satisfaction. Results show the platform reduced weekday AHU run times by 2 h and 35 min per AHU per day during the pandemic time period. Simulation shows that 6.1% annual whole-building savings can be achieved when the building is fully occupied. The results are compared with prior studies, and potential drivers are discussed for future opportunities. The assessment results shed light on the expected in-the-field performance for researchers and industry stakeholders and enabled practical considerations as the technology strives to move beyond research-grade pilot trials into product-grade deployment.

Suggested Citation

  • Guanjing Lin & Armando Casillas & Maggie Sheng & Jessica Granderson, 2023. "Performance Evaluation of an Occupancy-Based HVAC Control System in an Office Building," Energies, MDPI, vol. 16(20), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7088-:d:1259584
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7088/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7088/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Donghun & Wang, Zhe & Brugger, James & Blum, David & Wetter, Michael & Hong, Tianzhen & Piette, Mary Ann, 2022. "Site demonstration and performance evaluation of MPC for a large chiller plant with TES for renewable energy integration and grid decarbonization," Applied Energy, Elsevier, vol. 321(C).
    2. Kong, Meng & Dong, Bing & Zhang, Rongpeng & O'Neill, Zheng, 2022. "HVAC energy savings, thermal comfort and air quality for occupant-centric control through a side-by-side experimental study," Applied Energy, Elsevier, vol. 306(PA).
    3. Guanjing Lin & Hannah Kramer & Valerie Nibler & Eliot Crowe & Jessica Granderson, 2022. "Building Analytics Tool Deployment at Scale: Benefits, Costs, and Deployment Practices," Energies, MDPI, vol. 15(13), pages 1-17, July.
    4. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    5. Pang, Zhihong & Chen, Yan & Zhang, Jian & O'Neill, Zheng & Cheng, Hwakong & Dong, Bing, 2020. "Nationwide HVAC energy-saving potential quantification for office buildings with occupant-centric controls in various climates," Applied Energy, Elsevier, vol. 279(C).
    6. Peng, Yuzhen & Rysanek, Adam & Nagy, Zoltán & Schlüter, Arno, 2018. "Using machine learning techniques for occupancy-prediction-based cooling control in office buildings," Applied Energy, Elsevier, vol. 211(C), pages 1343-1358.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alperen Yayla & Kübra Sultan Świerczewska & Mahmut Kaya & Bahadır Karaca & Yusuf Arayici & Yunus Emre Ayözen & Onur Behzat Tokdemir, 2022. "Artificial Intelligence (AI)-Based Occupant-Centric Heating Ventilation and Air Conditioning (HVAC) Control System for Multi-Zone Commercial Buildings," Sustainability, MDPI, vol. 14(23), pages 1-29, December.
    2. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    3. Mahmud, Arafat & Dhrubo, Ehsan Ahmed & Ahmed, S. Shahnawaz & Chowdhury, Abdul Hasib & Hossain, Md. Farhad & Rahman, Hamidur & Masood, Nahid-Al, 2022. "Energy conservation for existing cooling and lighting loads," Energy, Elsevier, vol. 255(C).
    4. Pang, Zhihong & O'Neill, Zheng & Chen, Yan & Zhang, Jian & Cheng, Hwakong & Dong, Bing, 2023. "Adopting occupancy-based HVAC controls in commercial building energy codes: Analysis of cost-effectiveness and decarbonization potential," Applied Energy, Elsevier, vol. 349(C).
    5. Raman, Naren Srivaths & Chen, Bo & Barooah, Prabir, 2022. "On energy-efficient HVAC operation with Model Predictive Control: A multiple climate zone study," Applied Energy, Elsevier, vol. 324(C).
    6. Dong, Lianxin & Wu, Qing & Hong, Juhua & Wang, Zhihua & Fan, Shuai & He, Guangyu, 2023. "An adaptive decentralized regulation strategy for the cluster with massive inverter air conditionings," Applied Energy, Elsevier, vol. 330(PA).
    7. Lei, Yue & Zhan, Sicheng & Ono, Eikichi & Peng, Yuzhen & Zhang, Zhiang & Hasama, Takamasa & Chong, Adrian, 2022. "A practical deep reinforcement learning framework for multivariate occupant-centric control in buildings," Applied Energy, Elsevier, vol. 324(C).
    8. Jiang, Zixin & Deng, Zhipeng & Wang, Xuezheng & Dong, Bing, 2023. "PANDEMIC: Occupancy driven predictive ventilation control to minimize energy consumption and infection risk," Applied Energy, Elsevier, vol. 334(C).
    9. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    10. Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2022. "Interpretable deep learning models for hourly solar radiation prediction based on graph neural network and attention," Applied Energy, Elsevier, vol. 321(C).
    11. Imran & Naeem Iqbal & Shabir Ahmad & Do Hyeun Kim, 2021. "Towards Mountain Fire Safety Using Fire Spread Predictive Analytics and Mountain Fire Containment in IoT Environment," Sustainability, MDPI, vol. 13(5), pages 1-23, February.
    12. Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
    13. Wenbo Zhao & Ling Fan, 2024. "Short-Term Load Forecasting Method for Industrial Buildings Based on Signal Decomposition and Composite Prediction Model," Sustainability, MDPI, vol. 16(6), pages 1-21, March.
    14. Jing Zhao & Yu Shan, 2020. "A Fuzzy Control Strategy Using the Load Forecast for Air Conditioning System," Energies, MDPI, vol. 13(3), pages 1-17, January.
    15. Dong, Zihang & Zhang, Xi & Li, Yijun & Strbac, Goran, 2023. "Values of coordinated residential space heating in demand response provision," Applied Energy, Elsevier, vol. 330(PB).
    16. Yoon, Y. & Jung, S. & Im, P. & Salonvaara, M. & Bhandari, M. & Kunwar, N., 2023. "Empirical validation of building energy simulation model input parameter for multizone commercial building during the cooling season," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    17. Nilofar Asim & Marzieh Badiei & Masita Mohammad & Halim Razali & Armin Rajabi & Lim Chin Haw & Mariyam Jameelah Ghazali, 2022. "Sustainability of Heating, Ventilation and Air-Conditioning (HVAC) Systems in Buildings—An Overview," IJERPH, MDPI, vol. 19(2), pages 1-16, January.
    18. Pinto, Giuseppe & Deltetto, Davide & Capozzoli, Alfonso, 2021. "Data-driven district energy management with surrogate models and deep reinforcement learning," Applied Energy, Elsevier, vol. 304(C).
    19. Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    20. Ye, Yunyang & Chen, Yan & Zhang, Jian & Pang, Zhihong & O’Neill, Zheng & Dong, Bing & Cheng, Hwakong, 2021. "Energy-saving potential evaluation for primary schools with occupant-centric controls," Applied Energy, Elsevier, vol. 293(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7088-:d:1259584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.