IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i5p2461-d505404.html
   My bibliography  Save this article

Towards Mountain Fire Safety Using Fire Spread Predictive Analytics and Mountain Fire Containment in IoT Environment

Author

Listed:
  • Imran

    (Department of Computer Engineering, Jeju National University, Jeju 63243, Korea)

  • Naeem Iqbal

    (Department of Computer Engineering, Jeju National University, Jeju 63243, Korea)

  • Shabir Ahmad

    (Software Engineering Department University of Engineering & Technology Mardan, Mardan 23200, Pakistan
    Department of IT Convergence Engineering, Gachon University, Seongnam-Si 461-701, Korea)

  • Do Hyeun Kim

    (Department of Computer Engineering, Jeju National University, Jeju 63243, Korea)

Abstract

Mountains are popular tourist destinations due to their climate, fresh atmosphere, breathtaking sceneries, and varied topography. However, they are at times exposed to accidents, such as fire caused due to natural hazards and human activities. Such unforeseen fire accidents have a social, economic, and environmental impact on mountain towns worldwide. Protecting mountains from such fire accidents is also very challenging in terms of the high cost of fire containment resources, tracking fire spread, and evacuating the people at risk. This paper aims to fill this gap and proposes a three-fold methodology for fire safety in the mountains. The first part of the methodology is an optimization model for effective fire containment resource utilization. The second part of the methodology is a novel ensemble model based on machine learning, the heuristic approach, and principal component regression for predictive analytics of fire spread data. The final part of the methodology consists of an Internet of Things-based task orchestration approach to notify fire safety information to safety authorities. The proposed three-fold fire safety approach provides in-time information to safety authorities for making on-time decisions to minimize the damage caused by mountain fire with minimum containment cost. The performance of optimization models is evaluated in terms of execution time and cost. The particle swarm optimization-based model performs better in terms of cost, whereas the bat algorithm performs better in terms of execution time. The prediction models’ performance is evaluated in terms of root mean square error, mean absolute error, and mean absolute percentage error. The proposed ensemble-based prediction model accuracy for fire spread and burned area prediction is higher than that of the state-of-the-art algorithms. It is evident from the results that the proposed fire safety mechanism is a step towards efficient mountain fire safety management.

Suggested Citation

  • Imran & Naeem Iqbal & Shabir Ahmad & Do Hyeun Kim, 2021. "Towards Mountain Fire Safety Using Fire Spread Predictive Analytics and Mountain Fire Containment in IoT Environment," Sustainability, MDPI, vol. 13(5), pages 1-23, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2461-:d:505404
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/5/2461/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/5/2461/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zheng, Zhong & Huang, Wei & Li, Songnian & Zeng, Yongnian, 2017. "Forest fire spread simulating model using cellular automaton with extreme learning machine," Ecological Modelling, Elsevier, vol. 348(C), pages 33-43.
    2. Peng, Yuzhen & Rysanek, Adam & Nagy, Zoltán & Schlüter, Arno, 2018. "Using machine learning techniques for occupancy-prediction-based cooling control in office buildings," Applied Energy, Elsevier, vol. 211(C), pages 1343-1358.
    3. Jung Wook Park & Ohk Kun Lim & Woo Jun You, 2020. "Analysis on the Fire Growth Rate Index Considering of Scale Factor, Volume Fraction, and Ignition Heat Source for Polyethylene Foam Pipe Insulation," Energies, MDPI, vol. 13(14), pages 1-15, July.
    4. Fazli Wahid & Muhammad Fayaz & Ayman Aljarbouh & Masood Mir & Muhammad Aamir & Imran, 2020. "Energy Consumption Optimization and User Comfort Maximization in Smart Buildings Using a Hybrid of the Firefly and Genetic Algorithms," Energies, MDPI, vol. 13(17), pages 1-26, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kuldoshbay Avazov & An Eui Hyun & Alabdulwahab Abrar Sami S & Azizbek Khaitov & Akmalbek Bobomirzaevich Abdusalomov & Young Im Cho, 2023. "Forest Fire Detection and Notification Method Based on AI and IoT Approaches," Future Internet, MDPI, vol. 15(2), pages 1-13, January.
    2. Imran & Faisal Jamil & Dohyeun Kim, 2021. "An Ensemble of Prediction and Learning Mechanism for Improving Accuracy of Anomaly Detection in Network Intrusion Environments," Sustainability, MDPI, vol. 13(18), pages 1-22, September.
    3. Amit Sundas & Sumit Badotra & Salil Bharany & Ahmad Almogren & Elsayed M. Tag-ElDin & Ateeq Ur Rehman, 2022. "HealthGuard: An Intelligent Healthcare System Security Framework Based on Machine Learning," Sustainability, MDPI, vol. 14(19), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    2. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    3. Bartosz Radomski & Tomasz Mróz, 2021. "The Methodology for Designing Residential Buildings with a Positive Energy Balance—Case Study," Energies, MDPI, vol. 14(16), pages 1-19, August.
    4. Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
    5. Jing Zhao & Yu Shan, 2020. "A Fuzzy Control Strategy Using the Load Forecast for Air Conditioning System," Energies, MDPI, vol. 13(3), pages 1-17, January.
    6. Tien, Paige Wenbin & Wei, Shuangyu & Calautit, John Kaiser & Darkwa, Jo & Wood, Christopher, 2022. "Real-time monitoring of occupancy activities and window opening within buildings using an integrated deep learning-based approach for reducing energy demand," Applied Energy, Elsevier, vol. 308(C).
    7. Cheng, Fanyong & Cui, Can & Cai, Wenjian & Zhang, Xin & Ge, Yuan & Li, Bingxu, 2022. "A novel data-driven air balancing method with energy-saving constraint strategy to minimize the energy consumption of ventilation system," Energy, Elsevier, vol. 239(PB).
    8. Marco Pau & Panagiotis Kapsalis & Zhiyu Pan & George Korbakis & Dario Pellegrino & Antonello Monti, 2022. "MATRYCS—A Big Data Architecture for Advanced Services in the Building Domain," Energies, MDPI, vol. 15(7), pages 1-22, April.
    9. Hany Habbak & Mohamed Mahmoud & Khaled Metwally & Mostafa M. Fouda & Mohamed I. Ibrahem, 2023. "Load Forecasting Techniques and Their Applications in Smart Grids," Energies, MDPI, vol. 16(3), pages 1-33, February.
    10. Baxter Williams & Daniel Bishop & Patricio Gallardo & J. Geoffrey Chase, 2023. "Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations," Energies, MDPI, vol. 16(13), pages 1-28, July.
    11. Anastasios I. Dounis, 2022. "Machine Intelligence in Smart Buildings," Energies, MDPI, vol. 16(1), pages 1-5, December.
    12. Zhao, Haitao & Ezeh, Collins I. & Ren, Weijia & Li, Wentao & Pang, Cheng Heng & Zheng, Chenghang & Gao, Xiang & Wu, Tao, 2019. "Integration of machine learning approaches for accelerated discovery of transition-metal dichalcogenides as Hg0 sensing materials," Applied Energy, Elsevier, vol. 254(C).
    13. Gohar Gholamibozanjani & Mohammed Farid, 2021. "A Critical Review on the Control Strategies Applied to PCM-Enhanced Buildings," Energies, MDPI, vol. 14(7), pages 1-39, March.
    14. Mahmud, Arafat & Dhrubo, Ehsan Ahmed & Ahmed, S. Shahnawaz & Chowdhury, Abdul Hasib & Hossain, Md. Farhad & Rahman, Hamidur & Masood, Nahid-Al, 2022. "Energy conservation for existing cooling and lighting loads," Energy, Elsevier, vol. 255(C).
    15. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "Modeling, air balancing and optimal pressure set-point selection for the ventilation system with minimized energy consumption," Applied Energy, Elsevier, vol. 236(C), pages 574-589.
    16. Tomasz Szul & Sylwester Tabor & Krzysztof Pancerz, 2021. "Application of the BORUTA Algorithm to Input Data Selection for a Model Based on Rough Set Theory (RST) to Prediction Energy Consumption for Building Heating," Energies, MDPI, vol. 14(10), pages 1-13, May.
    17. Md Mijanur Rahman & Mohammad Shakeri & Sieh Kiong Tiong & Fatema Khatun & Nowshad Amin & Jagadeesh Pasupuleti & Mohammad Kamrul Hasan, 2021. "Prospective Methodologies in Hybrid Renewable Energy Systems for Energy Prediction Using Artificial Neural Networks," Sustainability, MDPI, vol. 13(4), pages 1-28, February.
    18. Liang, Xinbin & Chen, Siliang & Zhu, Xu & Jin, Xinqiao & Du, Zhimin, 2023. "Domain knowledge decomposition of building energy consumption and a hybrid data-driven model for 24-h ahead predictions," Applied Energy, Elsevier, vol. 344(C).
    19. Jin Dong & Christopher Winstead & James Nutaro & Teja Kuruganti, 2018. "Occupancy-Based HVAC Control with Short-Term Occupancy Prediction Algorithms for Energy-Efficient Buildings," Energies, MDPI, vol. 11(9), pages 1-20, September.
    20. Haizhou Fang & Hongwei Tan & Ningfang Dai & Zhaohui Liu & Risto Kosonen, 2023. "Hourly Building Energy Consumption Prediction Using a Training Sample Selection Method Based on Key Feature Search," Sustainability, MDPI, vol. 15(9), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2461-:d:505404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.