IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i19p6801-d1247045.html
   My bibliography  Save this article

Mechanical Ventilation Heat Recovery Modelling for AccuRate Home—A Benchmark Tool for Whole House Energy Rating in Australia

Author

Listed:
  • Jinfei Sun

    (Energy Division, Commonwealth Scientific and Industrial Research Organisation, Melbourne, VIC 3168, Australia
    Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Qingdao University of Technology, Qingdao 266520, China
    Shandong Key Laboratory of Waste Heat Utilization and Energy Saving Equipment Technology, Qingdao University of Technology, Qingdao 266520, China
    College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China)

  • Zhengen Ren

    (Energy Division, Commonwealth Scientific and Industrial Research Organisation, Melbourne, VIC 3168, Australia)

  • Jianxiang Guo

    (Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Qingdao University of Technology, Qingdao 266520, China
    Shandong Key Laboratory of Waste Heat Utilization and Energy Saving Equipment Technology, Qingdao University of Technology, Qingdao 266520, China
    College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China)

Abstract

To manage energy-efficient indoor air quality, mechanical ventilation with a heat recovery system provides an effective measure to remove extra moisture and air contaminants, especially in bathrooms. Previous studies reveal that heat recovery technology can reduce energy consumption, and its calculation needs detailed information on the thermal performance of exhaust air. However, there are few studies on the thermal performance of bathroom exhaust air during and after showers. This study proposed a detailed thermal performance prediction model for bathroom exhaust air based on the coupled heat and mass transfer theory. The proposed model was implemented into the AccuRate Home engine to estimate the thermal performance of residential buildings with heat recovery systems. The time variation of the water film temperature and thickness on the bathroom floor can be estimated by the proposed model, which is helpful in determining whether the water has completely evaporated. Simulation results show that changing the airflow rate in the bathroom has little effect on drying the wet floor without additional heating. The additional air heater installed in the bathroom can improve floor water evaporation efficiency by 24.7% under an airflow rate of 507.6 m 3 /h. It also demonstrates that heat recovery can significantly decrease the building energy demand with the fresh air load increasing and contribute about 0.6 stars improvement for the houses in Hobart (heating-dominated region). It may be reduced by around 3.3 MJ/(m 2 ·year) for the houses in other regions. With this study, guidelines for optimizing the control strategy of the dehumidification process are put forward.

Suggested Citation

  • Jinfei Sun & Zhengen Ren & Jianxiang Guo, 2023. "Mechanical Ventilation Heat Recovery Modelling for AccuRate Home—A Benchmark Tool for Whole House Energy Rating in Australia," Energies, MDPI, vol. 16(19), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6801-:d:1247045
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/19/6801/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/19/6801/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, L.Z., 2006. "Energy performance of independent air dehumidification systems with energy recovery measures," Energy, Elsevier, vol. 31(8), pages 1228-1242.
    2. Bojic, M. & Trnobransky, K., 1995. "Influence of hot tool parameters on heat recovery in a space-heating and ventilation system," Energy, Elsevier, vol. 20(10), pages 1075-1079.
    3. Qi Xu & Saffa Riffat & Shihao Zhang, 2019. "Review of Heat Recovery Technologies for Building Applications," Energies, MDPI, vol. 12(7), pages 1-22, April.
    4. Lei Tang & Zhengtao Ai & Chunyan Song & Guoqiang Zhang & Zhengxuan Liu, 2021. "A Strategy to Maximally Utilize Outdoor Air for Indoor Thermal Environment," Energies, MDPI, vol. 14(13), pages 1-13, July.
    5. Tom Marsik & Riley Bickford & Conor Dennehy & Robbin Garber-Slaght & Jeremy Kasper, 2021. "Impact of Intake and Exhaust Ducts on the Recovery Efficiency of Heat Recovery Ventilation Systems," Energies, MDPI, vol. 14(2), pages 1-10, January.
    6. Bai, H.Y. & Liu, P. & Justo Alonso, M. & Mathisen, H.M., 2022. "A review of heat recovery technologies and their frost control for residential building ventilation in cold climate regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Slawomir Rabczak & Krzysztof Nowak, 2024. "Evaluating the Efficiency of Surface-Based Air Heating Systems," Energies, MDPI, vol. 17(5), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Antonellis, Stefano & Joppolo, Cesare Maria & Molinaroli, Luca & Pasini, Alberto, 2012. "Simulation and energy efficiency analysis of desiccant wheel systems for drying processes," Energy, Elsevier, vol. 37(1), pages 336-345.
    2. Zhang, Tao & Liu, Xiaohua & Jiang, Yi, 2014. "Development of temperature and humidity independent control (THIC) air-conditioning systems in China—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 793-803.
    3. Duan, Zhiyin & Zhan, Changhong & Zhang, Xingxing & Mustafa, Mahmud & Zhao, Xudong & Alimohammadisagvand, Behrang & Hasan, Ala, 2012. "Indirect evaporative cooling: Past, present and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6823-6850.
    4. Piotr Michalak, 2023. "Simulation and Experimental Study on the Use of Ventilation Air for Space Heating of a Room in a Low-Energy Building," Energies, MDPI, vol. 16(8), pages 1-17, April.
    5. Xu, Peng & Ma, Xiaoli & Zhao, Xudong & Fancey, Kevin, 2017. "Experimental investigation of a super performance dew point air cooler," Applied Energy, Elsevier, vol. 203(C), pages 761-777.
    6. Ruivo, Celestino R. & Goldsworthy, Mark & Intini, Manuel, 2014. "Interpolation methods to predict the influence of inlet airflow states on desiccant wheel performance at low regeneration temperature," Energy, Elsevier, vol. 68(C), pages 765-772.
    7. Francesco Fiorito & Giandomenico Vurro & Francesco Carlucci & Ludovica Maria Campagna & Mariella De Fino & Salvatore Carlucci & Fabio Fatiguso, 2022. "Adaptation of Users to Future Climate Conditions in Naturally Ventilated Historic Buildings: Effects on Indoor Comfort," Energies, MDPI, vol. 15(14), pages 1-21, July.
    8. Ge, Gaoming & Xiao, Fu & Xu, Xinhua, 2011. "Model-based optimal control of a dedicated outdoor air-chilled ceiling system using liquid desiccant and membrane-based total heat recovery," Applied Energy, Elsevier, vol. 88(11), pages 4180-4190.
    9. Ge, T.S. & Dai, Y.J. & Wang, R.Z. & Li, Y., 2008. "Experimental investigation on a one-rotor two-stage rotary desiccant cooling system," Energy, Elsevier, vol. 33(12), pages 1807-1815.
    10. Piotr Michalak, 2022. "Impact of Air Density Variation on a Simulated Earth-to-Air Heat Exchanger’s Performance," Energies, MDPI, vol. 15(9), pages 1-24, April.
    11. Cuce, Pinar Mert & Riffat, Saffa, 2015. "A comprehensive review of heat recovery systems for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 665-682.
    12. Mardiana-Idayu, A. & Riffat, S.B., 2012. "Review on heat recovery technologies for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1241-1255.
    13. Liu, Yuting & Li, Jun Ming & Yang, Xu & Zhao, Xudong, 2019. "Two-dimensional numerical study of a heat and mass exchanger for a dew-point evaporative cooler," Energy, Elsevier, vol. 168(C), pages 975-988.
    14. Kofi Owura Amoabeng & Kwang Ho Lee & Jong Min Choi, 2019. "Modeling and Simulation Performance Evaluation of a Proposed Calorimeter for Testing a Heat Pump System," Energies, MDPI, vol. 12(23), pages 1-22, December.
    15. Qi, Ronghui & Tian, Changqing & Shao, Shuangquan & Tang, Mingsheng & Lu, Lin, 2011. "Experimental investigation on performance improvement of electro-osmotic regeneration for solid desiccant," Applied Energy, Elsevier, vol. 88(8), pages 2816-2823, August.
    16. Yao, Ye, 2010. "Using power ultrasound for the regeneration of dehumidizers in desiccant air-conditioning systems: A review of prospective studies and unexplored issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1860-1873, September.
    17. Ahmad Taki & Anastasiya Zakharanka, 2023. "The Effect of Degradation on Cold Climate Building Energy Performance: A Comparison with Hot Climate Buildings," Sustainability, MDPI, vol. 15(8), pages 1-38, April.
    18. O’Connor, Dominic & Calautit, John Kaiser & Hughes, Ben Richard, 2016. "A novel design of a desiccant rotary wheel for passive ventilation applications," Applied Energy, Elsevier, vol. 179(C), pages 99-109.
    19. Qi, Ronghui & Lu, Lin & Yang, Hongxing & Qin, Fei, 2013. "Investigation on wetted area and film thickness for falling film liquid desiccant regeneration system," Applied Energy, Elsevier, vol. 112(C), pages 93-101.
    20. Li, Hao & Zhang, Tao & Zhang, Ji & Guan, Bowen & Liu, Xiaohua & Nakazawa, Takema & Fang, Lin & Tanaka, Toshio, 2023. "Investigation of energy recovery performance and frost risk of membrane enthalpy exchanger applied in cold climates," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6801-:d:1247045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.