Mechanical Ventilation Heat Recovery Modelling for AccuRate Home—A Benchmark Tool for Whole House Energy Rating in Australia
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zhang, L.Z., 2006. "Energy performance of independent air dehumidification systems with energy recovery measures," Energy, Elsevier, vol. 31(8), pages 1228-1242.
- Bojic, M. & Trnobransky, K., 1995. "Influence of hot tool parameters on heat recovery in a space-heating and ventilation system," Energy, Elsevier, vol. 20(10), pages 1075-1079.
- Qi Xu & Saffa Riffat & Shihao Zhang, 2019. "Review of Heat Recovery Technologies for Building Applications," Energies, MDPI, vol. 12(7), pages 1-22, April.
- Lei Tang & Zhengtao Ai & Chunyan Song & Guoqiang Zhang & Zhengxuan Liu, 2021. "A Strategy to Maximally Utilize Outdoor Air for Indoor Thermal Environment," Energies, MDPI, vol. 14(13), pages 1-13, July.
- Tom Marsik & Riley Bickford & Conor Dennehy & Robbin Garber-Slaght & Jeremy Kasper, 2021. "Impact of Intake and Exhaust Ducts on the Recovery Efficiency of Heat Recovery Ventilation Systems," Energies, MDPI, vol. 14(2), pages 1-10, January.
- Bai, H.Y. & Liu, P. & Justo Alonso, M. & Mathisen, H.M., 2022. "A review of heat recovery technologies and their frost control for residential building ventilation in cold climate regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Slawomir Rabczak & Krzysztof Nowak, 2024. "Evaluating the Efficiency of Surface-Based Air Heating Systems," Energies, MDPI, vol. 17(5), pages 1-15, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lu, Hao & Lu, Lin & Luo, Yimo & Qi, Ronghui, 2016. "Investigation on the dynamic characteristics of the counter-current flow for liquid desiccant dehumidification," Energy, Elsevier, vol. 101(C), pages 229-238.
- De Antonellis, Stefano & Joppolo, Cesare Maria & Molinaroli, Luca & Pasini, Alberto, 2012. "Simulation and energy efficiency analysis of desiccant wheel systems for drying processes," Energy, Elsevier, vol. 37(1), pages 336-345.
- Zhang, Tao & Liu, Xiaohua & Jiang, Yi, 2014. "Development of temperature and humidity independent control (THIC) air-conditioning systems in China—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 793-803.
- Liu, Hongdou & Yang, Hongquan & Qi, Ronghui, 2020. "A review of electrically driven dehumidification technology for air-conditioning systems," Applied Energy, Elsevier, vol. 279(C).
- Duan, Zhiyin & Zhan, Changhong & Zhang, Xingxing & Mustafa, Mahmud & Zhao, Xudong & Alimohammadisagvand, Behrang & Hasan, Ala, 2012. "Indirect evaporative cooling: Past, present and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6823-6850.
- Piotr Michalak, 2023. "Simulation and Experimental Study on the Use of Ventilation Air for Space Heating of a Room in a Low-Energy Building," Energies, MDPI, vol. 16(8), pages 1-17, April.
- Xu, Peng & Ma, Xiaoli & Zhao, Xudong & Fancey, Kevin, 2017. "Experimental investigation of a super performance dew point air cooler," Applied Energy, Elsevier, vol. 203(C), pages 761-777.
- Ruivo, Celestino R. & Goldsworthy, Mark & Intini, Manuel, 2014. "Interpolation methods to predict the influence of inlet airflow states on desiccant wheel performance at low regeneration temperature," Energy, Elsevier, vol. 68(C), pages 765-772.
- Açıkkalp, Emin & Caliskan, Hakan & Hong, Hiki & Piao, Hongjie & Seung, Dohyun, 2022. "Extended exergy analysis of a photovoltaic-thermal (PVT) module based desiccant air cooling system for buildings," Applied Energy, Elsevier, vol. 323(C).
- Yang, C.M. & Chen, C.C. & Chen, S.L., 2013. "Energy-efficient air conditioning system with combination of radiant cooling and periodic total heat exchanger," Energy, Elsevier, vol. 59(C), pages 467-477.
- Li, Guo-Pei & Zhang, Li-Zhi, 2016. "Investigation of a solar energy driven and hollow fiber membrane-based humidification–dehumidification desalination system," Applied Energy, Elsevier, vol. 177(C), pages 393-408.
- Francesco Fiorito & Giandomenico Vurro & Francesco Carlucci & Ludovica Maria Campagna & Mariella De Fino & Salvatore Carlucci & Fabio Fatiguso, 2022. "Adaptation of Users to Future Climate Conditions in Naturally Ventilated Historic Buildings: Effects on Indoor Comfort," Energies, MDPI, vol. 15(14), pages 1-21, July.
- Ge, Gaoming & Xiao, Fu & Xu, Xinhua, 2011. "Model-based optimal control of a dedicated outdoor air-chilled ceiling system using liquid desiccant and membrane-based total heat recovery," Applied Energy, Elsevier, vol. 88(11), pages 4180-4190.
- Ge, T.S. & Dai, Y.J. & Wang, R.Z. & Li, Y., 2008. "Experimental investigation on a one-rotor two-stage rotary desiccant cooling system," Energy, Elsevier, vol. 33(12), pages 1807-1815.
- Piotr Michalak, 2022. "Impact of Air Density Variation on a Simulated Earth-to-Air Heat Exchanger’s Performance," Energies, MDPI, vol. 15(9), pages 1-24, April.
- Tureková, Ivana & Marková, Iveta & Sventeková, Eva & Harangózo, Jozef, 2022. "Evaluation of microclimatic conditions during the teaching process in selected school premises. Slovak case study," Energy, Elsevier, vol. 239(PD).
- Liu, Di & Zhao, Fu-Yun & Tang, Guang-Fa, 2010. "Active low-grade energy recovery potential for building energy conservation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2736-2747, December.
- Cuce, Pinar Mert & Riffat, Saffa, 2015. "A comprehensive review of heat recovery systems for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 665-682.
- Łukasz Amanowicz & Katarzyna Ratajczak & Edyta Dudkiewicz, 2023. "Recent Advancements in Ventilation Systems Used to Decrease Energy Consumption in Buildings—Literature Review," Energies, MDPI, vol. 16(4), pages 1-39, February.
- Singh, Ashutosh & Kumar, Sunil & Dev, Rahul, 2019. "Studies on cocopeat, sawdust and dried cow dung as desiccant for evaporative cooling system," Renewable Energy, Elsevier, vol. 142(C), pages 295-303.
More about this item
Keywords
heat recovery; thermal performance; exhaust air; water film; AccuRate Home;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6801-:d:1247045. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.