IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i19p6779-d1246146.html
   My bibliography  Save this article

Multi-Objective Decision Approach for Optimal Real-Time Switching Sequence of Network Reconfiguration Realizing Maximum Load Capacity

Author

Listed:
  • Ola Badran

    (Department of Electrical Engineering-Industrial Automation, Faculty of Engineering and Technology, Palestine Technical University—Kadoorie (PTUK), Tulkarm P.O. Box 7, Palestine)

  • Jafar Jallad

    (Department of Electrical Engineering-Industrial Automation, Faculty of Engineering and Technology, Palestine Technical University—Kadoorie (PTUK), Tulkarm P.O. Box 7, Palestine)

Abstract

One of the most famous methods for minimizing power loss is distribution network reconfiguration (DNR). Accordingly, many researchers have focused their work on finding a network’s optimal configuration in planning mode. However, few address the switching sequence process during operation mode. This paper introduces an innovative approach to minimize power loss in distribution networks. It addresses the often-overlooked real-time switching sequence order (SSO) during network operation, ensuring a smooth transition to the optimal configuration within operational constraints. Simultaneously, it optimizes distribution network reconfiguration (DNR) and distributed generation location and sizing (DG-LS) to maximize load capacity. The primary goal is to reduce power losses, improve voltage profiles, and enhance network efficiency. Utilizing multi-objective decision methods based on AHP, particle swarm optimization (PSO), and firefly algorithm (FA), this study achieves efficient results for SSO, DNR, and DG-LS optimization.

Suggested Citation

  • Ola Badran & Jafar Jallad, 2023. "Multi-Objective Decision Approach for Optimal Real-Time Switching Sequence of Network Reconfiguration Realizing Maximum Load Capacity," Energies, MDPI, vol. 16(19), pages 1-32, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6779-:d:1246146
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/19/6779/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/19/6779/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dhivya Swaminathan & Arul Rajagopalan, 2022. "Optimized Network Reconfiguration with Integrated Generation Using Tangent Golden Flower Algorithm," Energies, MDPI, vol. 15(21), pages 1-19, November.
    2. Ben Hamida, Imen & Salah, Saoussen Brini & Msahli, Faouzi & Mimouni, Mohamed Faouzi, 2018. "Optimal network reconfiguration and renewable DG integration considering time sequence variation in load and DGs," Renewable Energy, Elsevier, vol. 121(C), pages 66-80.
    3. Mirna Fouad Abd El-salam & Eman Beshr & Magdy B. Eteiba, 2018. "A New Hybrid Technique for Minimizing Power Losses in a Distribution System by Optimal Sizing and Siting of Distributed Generators with Network Reconfiguration," Energies, MDPI, vol. 11(12), pages 1-26, November.
    4. Mahmoud M. Sayed & Mohamed Y. Mahdy & Shady H. E. Abdel Aleem & Hosam K. M. Youssef & Tarek A. Boghdady, 2022. "Simultaneous Distribution Network Reconfiguration and Optimal Allocation of Renewable-Based Distributed Generators and Shunt Capacitors under Uncertain Conditions," Energies, MDPI, vol. 15(6), pages 1-27, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis A. Gallego Pareja & Jesús M. López-Lezama & Oscar Gómez Carmona, 2022. "A Mixed-Integer Linear Programming Model for the Simultaneous Optimal Distribution Network Reconfiguration and Optimal Placement of Distributed Generation," Energies, MDPI, vol. 15(9), pages 1-26, April.
    2. Nasreddine Belbachir & Mohamed Zellagui & Samir Settoul & Claude Ziad El-Bayeh & Ragab A. El-Sehiemy, 2023. "Multi Dimension-Based Optimal Allocation of Uncertain Renewable Distributed Generation Outputs with Seasonal Source-Load Power Uncertainties in Electrical Distribution Network Using Marine Predator Al," Energies, MDPI, vol. 16(4), pages 1-24, February.
    3. Chandrasekaran Venkatesan & Raju Kannadasan & Mohammed H. Alsharif & Mun-Kyeom Kim & Jamel Nebhen, 2021. "A Novel Multiobjective Hybrid Technique for Siting and Sizing of Distributed Generation and Capacitor Banks in Radial Distribution Systems," Sustainability, MDPI, vol. 13(6), pages 1-34, March.
    4. Manuel S. Alvarez-Alvarado & Johnny Rengifo & Rommel M. Gallegos-Núñez & José G. Rivera-Mora & Holguer H. Noriega & Washington Velasquez & Daniel L. Donaldson & Carlos D. Rodríguez-Gallegos, 2022. "Particle Swarm Optimization for Optimal Frequency Response with High Penetration of Photovoltaic and Wind Generation," Energies, MDPI, vol. 15(22), pages 1-12, November.
    5. Fatma Yaprakdal & Mustafa Baysal & Amjad Anvari-Moghaddam, 2019. "Optimal Operational Scheduling of Reconfigurable Microgrids in Presence of Renewable Energy Sources," Energies, MDPI, vol. 12(10), pages 1-17, May.
    6. Papadimitrakis, M. & Giamarelos, N. & Stogiannos, M. & Zois, E.N. & Livanos, N.A.-I. & Alexandridis, A., 2021. "Metaheuristic search in smart grid: A review with emphasis on planning, scheduling and power flow optimization applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    7. Xiao, Hao & Pei, Wei & Deng, Wei & Ma, Tengfei & Zhang, Shizhong & Kong, Li, 2021. "Enhancing risk control ability of distribution network for improved renewable energy integration through flexible DC interconnection," Applied Energy, Elsevier, vol. 284(C).
    8. Xiancheng Wang & Thiruvenkadam Srinivasan & Hyuntae Kim & In-ho Ra, 2020. "Exploration of DG Placement Strategy of Microgrids via FMFO Algorithm: Considering Increasing Power Demand and Diverse DG Combinations," Energies, MDPI, vol. 13(24), pages 1-24, December.
    9. Dhivya Swaminathan & Arul Rajagopalan & Oscar Danilo Montoya & Savitha Arul & Luis Fernando Grisales-Noreña, 2023. "Distribution Network Reconfiguration Based on Hybrid Golden Flower Algorithm for Smart Cities Evolution," Energies, MDPI, vol. 16(5), pages 1-24, March.
    10. Rasheed Abdulkader & Hayder M. A. Ghanimi & Pankaj Dadheech & Meshal Alharbi & Walid El-Shafai & Mostafa M. Fouda & Moustafa H. Aly & Dhivya Swaminathan & Sudhakar Sengan, 2023. "Soft Computing in Smart Grid with Decentralized Generation and Renewable Energy Storage System Planning," Energies, MDPI, vol. 16(6), pages 1-24, March.
    11. Chandrasekaran Venkatesan & Raju Kannadasan & Dhanasekar Ravikumar & Vijayaraja Loganathan & Mohammed H. Alsharif & Daeyong Choi & Junhee Hong & Zong Woo Geem, 2021. "Re-Allocation of Distributed Generations Using Available Renewable Potential Based Multi-Criterion-Multi-Objective Hybrid Technique," Sustainability, MDPI, vol. 13(24), pages 1-28, December.
    12. Mahmoud M. Sayed & Mohamed Y. Mahdy & Shady H. E. Abdel Aleem & Hosam K. M. Youssef & Tarek A. Boghdady, 2022. "Simultaneous Distribution Network Reconfiguration and Optimal Allocation of Renewable-Based Distributed Generators and Shunt Capacitors under Uncertain Conditions," Energies, MDPI, vol. 15(6), pages 1-27, March.
    13. O. D. Montoya & W. Gil-González & J. C. Hernández & D. A. Giral-Ramírez & A. Medina-Quesada, 2020. "A Mixed-Integer Nonlinear Programming Model for Optimal Reconfiguration of DC Distribution Feeders," Energies, MDPI, vol. 13(17), pages 1-22, August.
    14. Teketay Mulu Beza & Yen-Chih Huang & Cheng-Chien Kuo, 2020. "A Hybrid Optimization Approach for Power Loss Reduction and DG Penetration Level Increment in Electrical Distribution Network," Energies, MDPI, vol. 13(22), pages 1-17, November.
    15. Bruno Silva Torres & Luiz Eduardo Borges da Silva & Camila Paes Salomon & Carlos Henrique Valério de Moraes, 2022. "Integrating Smart Grid Devices into the Traditional Protection of Distribution Networks," Energies, MDPI, vol. 15(7), pages 1-28, March.
    16. Ardiaty Arief & Muhammad Bachtiar Nappu, 2023. "Novel Hybrid Modified Modal Analysis and Continuation Power Flow Method for Unity Power Factor DER Placement," Energies, MDPI, vol. 16(4), pages 1-18, February.
    17. Mukhopadhyay, Bineeta & Das, Debapriya, 2020. "Multi-objective dynamic and static reconfiguration with optimized allocation of PV-DG and battery energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    18. Fatma Yaprakdal & M. Berkay Yılmaz & Mustafa Baysal & Amjad Anvari-Moghaddam, 2020. "A Deep Neural Network-Assisted Approach to Enhance Short-Term Optimal Operational Scheduling of a Microgrid," Sustainability, MDPI, vol. 12(4), pages 1-27, February.
    19. Ahmadi, Bahman & Ceylan, Oguzhan & Ozdemir, Aydogan & Fotuhi-Firuzabad, Mahmoud, 2022. "A multi-objective framework for distributed energy resources planning and storage management," Applied Energy, Elsevier, vol. 314(C).
    20. Zbigniew Kłosowski & Łukasz Mazur, 2023. "Influence of the Type of Receiver on Electrical Energy Losses in Power Grids," Energies, MDPI, vol. 16(15), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6779-:d:1246146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.