IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6626-d1239991.html
   My bibliography  Save this article

Operation Optimization of Thermal Management System of Deep Metal Mine Based on Heat Current Method and Prediction Model

Author

Listed:
  • Wenpu Wang

    (Institute of Thermal Science and Technology, Shandong University, Jinan 250061, China)

  • Wei Shao

    (Institute of Thermal Science and Technology, Shandong University, Jinan 250061, China
    Shandong Institute of Advanced Technology, Jinan 250100, China)

  • Shuo Wang

    (Institute of Thermal Science and Technology, Shandong University, Jinan 250061, China)

  • Junling Liu

    (Institute of Thermal Science and Technology, Shandong University, Jinan 250061, China)

  • Kun Shao

    (Shandong Institute of Advanced Technology, Jinan 250100, China)

  • Zhuoqun Cao

    (Shandong Institute of Advanced Technology, Jinan 250100, China)

  • Yu Liu

    (Institute of Thermal Science and Technology, Shandong University, Jinan 250061, China)

  • Zheng Cui

    (Shandong Institute of Advanced Technology, Jinan 250100, China)

Abstract

With the increasing depth of metal mining, thermal damage has become a serious problem that restricts mining. The thermal management system of refrigeration and ventilation is an indispensable technology in the mining of deep metal mines, which plays a key role in improving the thermal and humid environment of mines. Optimizing the performance of refrigeration and ventilation systems to reduce energy consumption has become a focus of researchers’ attention. Based on the heat current method, this research establishes the overall heat transfer and flow constraint model of the refrigeration and ventilation system, and proposes an iterative algorithm that combines the refrigerator energy consumption model and the artificial neural network model of heat exchangers. The Lagrange multiplier method is used to optimize the system with the goal of minimizing the total power consumption of the system. The results show that under 9.1 kW cooling load conditions, the total energy consumption of the system reduces by 16.5%, and the COP of the refrigerator increases by 11.6%. The optimization results provide significant guidance for the production and energy consumption reduction of the deep metal mines.

Suggested Citation

  • Wenpu Wang & Wei Shao & Shuo Wang & Junling Liu & Kun Shao & Zhuoqun Cao & Yu Liu & Zheng Cui, 2023. "Operation Optimization of Thermal Management System of Deep Metal Mine Based on Heat Current Method and Prediction Model," Energies, MDPI, vol. 16(18), pages 1-21, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6626-:d:1239991
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6626/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6626/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tirmizi, Syed A. & Gandhidasan, P. & Zubair, Syed M., 2012. "Performance analysis of a chilled water system with various pumping schemes," Applied Energy, Elsevier, vol. 100(C), pages 238-248.
    2. Nunes, T.K. & Vargas, J.V.C. & Ordonez, J.C. & Shah, D. & Martinho, L.C.S., 2015. "Modeling, simulation and optimization of a vapor compression refrigeration system dynamic and steady state response," Applied Energy, Elsevier, vol. 158(C), pages 540-555.
    3. Chen, Xi & Chen, Qun & Chen, Hong & Xu, Ying-Gen & Zhao, Tian & Hu, Kang & He, Ke-Lun, 2019. "Heat current method for analysis and optimization of heat recovery-based power generation systems," Energy, Elsevier, vol. 189(C).
    4. Chen, Qun & Fu, Rong-Huan & Xu, Yun-Chao, 2015. "Electrical circuit analogy for heat transfer analysis and optimization in heat exchanger networks," Applied Energy, Elsevier, vol. 139(C), pages 81-92.
    5. Zhao, Tian & Chen, Xi & He, Ke-Lun & Chen, Qun, 2021. "A standardized modeling strategy for heat current method-based analysis and simulation of thermal systems," Energy, Elsevier, vol. 217(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikodem Szlązak & Marek Korzec, 2024. "Conditions That Determine Changing the Function of Mine Shafts in a Gassy Coal Mine—A Case Study," Energies, MDPI, vol. 17(6), pages 1-19, March.
    2. Luwei Ding & Zetian Zhang & Baiyi Li & Shengming Qi & Hengfeng Liu & Shuo Liu, 2024. "Feasibility Investigation of Geothermal Energy Heating System in Mining Area: Application of Mine Cooling and Aquifer Thermal Energy Exploitation Technique," Energies, MDPI, vol. 17(5), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Tian & Sun, Qing-Han & Li, Xia & Xin, Yong-Lin & Chen, Qun, 2023. "A novel transfer matrix-based method for steady-state modeling and analysis of thermal systems," Energy, Elsevier, vol. 281(C).
    2. Zhao, Tian & Chen, Xi & He, Ke-Lun & Chen, Qun, 2021. "A standardized modeling strategy for heat current method-based analysis and simulation of thermal systems," Energy, Elsevier, vol. 217(C).
    3. Xin, Yong-Lin & Zhao, Tian & Chen, Xi & He, Ke-Lun & Ma, Huan & Chen, Qun, 2022. "Heat current method-based real-time coordination of power and heat generation of multi-CHP units with flexibility retrofits," Energy, Elsevier, vol. 252(C).
    4. Miao Zhao & Liping Pang & Meng Liu & Shizhao Yu & Xiaodong Mao, 2020. "Control Strategy for Helicopter Thermal Management System Based on Liquid Cooling and Vapor Compression Refrigeration," Energies, MDPI, vol. 13(9), pages 1-26, May.
    5. Zhang, Suhan & Gu, Wei & Lu, Hai & Qiu, Haifeng & Lu, Shuai & Wang, Dada & Liang, Junyu & Li, Wenyun, 2021. "Superposition-principle based decoupling method for energy flow calculation in district heating networks," Applied Energy, Elsevier, vol. 295(C).
    6. Du Plessis, Gideon Edgar & Liebenberg, Leon & Mathews, Edward Henry, 2013. "The use of variable speed drives for cost-effective energy savings in South African mine cooling systems," Applied Energy, Elsevier, vol. 111(C), pages 16-27.
    7. Ma, Huan & Chen, Qun & Hu, Bo & Sun, Qinhan & Li, Tie & Wang, Shunjiang, 2021. "A compact model to coordinate flexibility and efficiency for decomposed scheduling of integrated energy system," Applied Energy, Elsevier, vol. 285(C).
    8. Jeon, Yongseok & Kim, Sunjae & Kim, Dongwoo & Chung, Hyun Joon & Kim, Yongchan, 2017. "Performance characteristics of an R600a household refrigeration cycle with a modified two-phase ejector for various ejector geometries and operating conditions," Applied Energy, Elsevier, vol. 205(C), pages 1059-1067.
    9. Huang, Sen & Zuo, Wangda & Sohn, Michael D., 2016. "Amelioration of the cooling load based chiller sequencing control," Applied Energy, Elsevier, vol. 168(C), pages 204-215.
    10. Olszewski, Pawel, 2022. "Experimental analysis of ON/OFF and variable speed drive controlled industrial chiller towards energy efficient operation," Applied Energy, Elsevier, vol. 309(C).
    11. He, Ke-Lun & Zhao, Tian & Ma, Huan & Chen, Qun, 2023. "Optimal operation of integrated power and thermal systems for flexibility improvement based on evaluation and utilization of heat storage in district heating systems," Energy, Elsevier, vol. 274(C).
    12. Khayyam, Hamid & Naebe, Minoo & Milani, Abbas S. & Fakhrhoseini, Seyed Mousa & Date, Abhijit & Shabani, Bahman & Atkiss, Steve & Ramakrishna, Seeram & Fox, Bronwyn & Jazar, Reza N., 2021. "Improving energy efficiency of carbon fiber manufacturing through waste heat recovery: A circular economy approach with machine learning," Energy, Elsevier, vol. 225(C).
    13. Li, Hangxin & Wang, Shengwei, 2017. "Probabilistic optimal design concerning uncertainties and on-site adaptive commissioning of air-conditioning water pump systems in buildings," Applied Energy, Elsevier, vol. 202(C), pages 53-65.
    14. Tian Zhao & Di Liu & Ke-Lun He & Xi Chen & Qun Chen, 2020. "An Integrated Three-Level Synergetic and Reliable Optimization Method Considering Heat Transfer Process, Component, and System," Energies, MDPI, vol. 13(16), pages 1-19, August.
    15. Lin He & Shunan Zhao & Guowen Xu & Xin Wu & Junlong Xie & Shanshan Cai, 2021. "Prediction and Evaluation of Dynamic Variations of the Thermal Environment in an Air-Conditioned Room Using Collaborative Simulation Method," Energies, MDPI, vol. 14(17), pages 1-19, August.
    16. Zhao, Tian & Chen, Xi & He, Ke-Lun & Chen, Qun, 2021. "A hierarchical and categorized algorithm for efficient and robust simulation of thermal systems based on the heat current method," Energy, Elsevier, vol. 215(PA).
    17. Hu, Kang & Chen, Lei & Chen, Qun & Wang, Xiao-Hai & Qi, Jun & Xu, Fei & Min, Yong, 2017. "Phase-change heat storage installation in combined heat and power plants for integration of renewable energy sources into power system," Energy, Elsevier, vol. 124(C), pages 640-651.
    18. Jie, Pengfei & Kong, Xiangfei & Rong, Xian & Xie, Shangqun, 2016. "Selecting the optimum pressure drop per unit length of district heating piping network based on operating strategies," Applied Energy, Elsevier, vol. 177(C), pages 341-353.
    19. Zhao, Tian & Min, Yong & Chen, Qun & Hao, Jun-Hong, 2016. "Electrical circuit analogy for analysis and optimization of absorption energy storage systems," Energy, Elsevier, vol. 104(C), pages 171-183.
    20. Vidović, Danko & Sutlović, Elis & Majstrović, Matislav, 2019. "Steady state analysis and modeling of the gas compressor station using the electrical analogy," Energy, Elsevier, vol. 166(C), pages 307-317.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6626-:d:1239991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.