IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6606-d1239411.html
   My bibliography  Save this article

Productivity Augmentation of Solar Stills by Coupled Copper Tubes and Parabolic Fins

Author

Listed:
  • Ajay Kumar Kaviti

    (Centre for Solar Energy Materials, VNRVJIET, Hyderabad 500090, India
    Department of Mechanical Engineering, VNRVJIET, Hyderabad 500090, India)

  • Magadapalli Teja

    (Department of Mechanical Engineering, VNRVJIET, Hyderabad 500090, India)

  • Oruganti Madhukar

    (Department of Mechanical Engineering, VNRVJIET, Hyderabad 500090, India)

  • Polaboina Bhanu Teja

    (Department of Mechanical Engineering, VNRVJIET, Hyderabad 500090, India)

  • Vakapalli Aashish

    (Department of Mechanical Engineering, VNRVJIET, Hyderabad 500090, India)

  • Gembali Srinivasa Gupta

    (Department of Mechanical Engineering, VNRVJIET, Hyderabad 500090, India)

  • Akkala Sivaram

    (Centre for Solar Energy Materials, VNRVJIET, Hyderabad 500090, India
    Department of Mechanical Engineering, VNRVJIET, Hyderabad 500090, India)

  • Vineet Singh Sikarwar

    (Institute of Plasma Physics of the Czech Academy of Sciences, Za Slovankou 1782/3, 18200 Prague, Czech Republic
    Department of Power Engineering, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic)

Abstract

A solar still is an eco-friendly device that makes use of ample solar energy for the purification of water. The main objective of this research is to increase the yield output of a double-slope solar still (DSSS) by coupling the basin liner with copper tubes and parabolic fins. In this work, the experiments were supervised for nine days with three different cases. For these experiments, copper tubes with thickness of 2 mm, outer diameter of 32 mm, inner diameter of 28 mm, and parabolic fins with 30 mm diameter and 50 mm height were considered. In the first case, non-coated copper tubes (NCCTs) were used, in the second case, coated copper tubes (CCTs) were employed, and in the last case, coated copper tubes with a combination of parabolic fins (CCTPFs) were used. The MSS (case-III) demonstrated a substantial yearly productivity enhancement of 57.79%, establishing its superiority in terms of output because of its higher daily distillate yield of 1215 mL/day in contrast to CSS. When compared, case III—CCTPF—performed better than case II—CCT—by 35.75%. The CSS and MSS both contributed to a decrease in the pH of the saline water, which went from 8.18 to 7.64 and 7.23, respectively. In comparison to the MSS and CSS, which had 0.428 mg/L and 0.569 mg/L of fluoride ions, respectively, brine water had a fluoride ion level of 0.734 mg/L. Total dissolved solids (TDS) concentration before desalination was 440 ppm and it was minimized to 20 ppm with MSS and 55 ppm with CSS, respectively, post-desalination. The corresponding cost per liter (CPL) of MSS and CSS is USD 0.053 and USD 0.040, respectively.

Suggested Citation

  • Ajay Kumar Kaviti & Magadapalli Teja & Oruganti Madhukar & Polaboina Bhanu Teja & Vakapalli Aashish & Gembali Srinivasa Gupta & Akkala Sivaram & Vineet Singh Sikarwar, 2023. "Productivity Augmentation of Solar Stills by Coupled Copper Tubes and Parabolic Fins," Energies, MDPI, vol. 16(18), pages 1-14, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6606-:d:1239411
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6606/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6606/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kalidasa Murugavel, K. & Sivakumar, S. & Riaz Ahamed, J. & Chockalingam, Kn.K.S.K. & Srithar, K., 2010. "Single basin double slope solar still with minimum basin depth and energy storing materials," Applied Energy, Elsevier, vol. 87(2), pages 514-523, February.
    2. Ajay Kumar Kaviti & Siva Ram Akkala & Mohd Affan Ali & Pulagam Anusha & Vineet Singh Sikarwar, 2023. "Performance Improvement of Solar Desalination System Based on CeO 2 -MWCNT Hybrid Nanofluid," Sustainability, MDPI, vol. 15(5), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Durkaieswaran, P. & Murugavel, K. Kalidasa, 2015. "Various special designs of single basin passive solar still – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1048-1060.
    2. Cabeza, Luisa F. & de Gracia, Alvaro & Zsembinszki, Gabriel & Borri, Emiliano, 2021. "Perspectives on thermal energy storage research," Energy, Elsevier, vol. 231(C).
    3. Gude, Veera Gnaneswar, 2015. "Energy storage for desalination processes powered by renewable energy and waste heat sources," Applied Energy, Elsevier, vol. 137(C), pages 877-898.
    4. Ould Dah, M.M. & Ouni, M. & Guizani, A. & Belghith, A., 2010. "The influence of the heat extraction mode on the performance and stability of a mini solar pond," Applied Energy, Elsevier, vol. 87(10), pages 3005-3010, October.
    5. Nayi, Kuldeep H. & Modi, Kalpesh V., 2018. "Pyramid solar still: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 136-148.
    6. Kalidasa Murugavel, K. & Srithar, K., 2011. "Performance study on basin type double slope solar still with different wick materials and minimum mass of water," Renewable Energy, Elsevier, vol. 36(2), pages 612-620.
    7. Ibrahim, Ayman G.M. & Allam, Elsayed E. & Elshamarka, Salman E., 2015. "A modified basin type solar still: Experimental performance and economic study," Energy, Elsevier, vol. 93(P1), pages 335-342.
    8. Modi, Kalpesh V. & Nayi, Kuldeep H., 2020. "Efficacy of forced condensation and forced evaporation with thermal energy storage material on square pyramid solar still," Renewable Energy, Elsevier, vol. 153(C), pages 1307-1319.
    9. Velmurugan, V. & Srithar, K., 2011. "Performance analysis of solar stills based on various factors affecting the productivity--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1294-1304, February.
    10. Xie, Guo & Sun, Licheng & Mo, Zhengyu & Liu, Hongtao & Du, Min, 2016. "Conceptual design and experimental investigation involving a modular desalination system composed of arrayed tubular solar stills," Applied Energy, Elsevier, vol. 179(C), pages 972-984.
    11. Sharshir, S.W. & Elsheikh, A.H. & Peng, Guilong & Yang, Nuo & El-Samadony, M.O.A. & Kabeel, A.E., 2017. "Thermal performance and exergy analysis of solar stills – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 521-544.
    12. Zanganeh, Peyman & Goharrizi, Ataallah Soltani & Ayatollahi, Shahab & Feilizadeh, Mehrzad & Dashti, Hossein, 2020. "Efficiency improvement of solar stills through wettability alteration of the condensation surface: An experimental study," Applied Energy, Elsevier, vol. 268(C).
    13. Panchal, Hitesh N., 2016. "Use of thermal energy storage materials for enhancement in distillate output of solar still: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 86-96.
    14. Karimi Estahbanati, M.R. & Ahsan, Amimul & Feilizadeh, Mehrzad & Jafarpur, Khosrow & Ashrafmansouri, Seyedeh-Saba & Feilizadeh, Mansoor, 2016. "Theoretical and experimental investigation on internal reflectors in a single-slope solar still," Applied Energy, Elsevier, vol. 165(C), pages 537-547.
    15. Ahsan, A. & Imteaz, M. & Thomas, U.A. & Azmi, M. & Rahman, A. & Nik Daud, N.N., 2014. "Parameters affecting the performance of a low cost solar still," Applied Energy, Elsevier, vol. 114(C), pages 924-930.
    16. Yadav, Saurabh & Sudhakar, K., 2015. "Different domestic designs of solar stills: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 718-731.
    17. Mohd Fazly Yusof & Mohd Remy Rozainy Mohd Arif Zainol & Ali Riahi & Nor Azazi Zakaria & Syafiq Shaharuddin & Siti Fairuz Juiani & Norazian Mohamed Noor & Mohd Hafiz Zawawi & Jazaul Ikhsan, 2022. "Investigation on the Urban Grey Water Treatment Using a Cost-Effective Solar Distillation Still," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
    18. Feilizadeh, Mansoor & Karimi Estahbanati, M.R. & Jafarpur, Khosrow & Roostaazad, Reza & Feilizadeh, Mehrzad & Taghvaei, Hamed, 2015. "Year-round outdoor experiments on a multi-stage active solar still with different numbers of solar collectors," Applied Energy, Elsevier, vol. 152(C), pages 39-46.
    19. Kaviti, Ajay Kumar & Yadav, Akhilesh & Shukla, Amit, 2016. "Inclined solar still designs: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 429-451.
    20. Arunkumar, T. & Jayaprakash, R. & Ahsan, Amimul & Denkenberger, D. & Okundamiya, M.S., 2013. "Effect of water and air flow on concentric tubular solar water desalting system," Applied Energy, Elsevier, vol. 103(C), pages 109-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6606-:d:1239411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.