Biomass Gasification and Applied Intelligent Retrieval in Modeling
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hung-Ta Wen & Jau-Huai Lu & Mai-Xuan Phuc, 2021. "Applying Artificial Intelligence to Predict the Composition of Syngas Using Rice Husks: A Comparison of Artificial Neural Networks and Gradient Boosting Regression," Energies, MDPI, vol. 14(10), pages 1-18, May.
- Chen, Wei-Hsin & Aniza, Ria & Arpia, Arjay A. & Lo, Hsiu-Ju & Hoang, Anh Tuan & Goodarzi, Vahabodin & Gao, Jianbing, 2022. "A comparative analysis of biomass torrefaction severity index prediction from machine learning," Applied Energy, Elsevier, vol. 324(C).
- Sara Maen Asaad & Abrar Inayat & Lisandra Rocha-Meneses & Farrukh Jamil & Chaouki Ghenai & Abdallah Shanableh, 2022. "Prospective of Response Surface Methodology as an Optimization Tool for Biomass Gasification Process," Energies, MDPI, vol. 16(1), pages 1-18, December.
- Lefevere, Raphaël & Mariani, Mauro & Zambotti, Lorenzo, 2011. "Large deviations for renewal processes," Stochastic Processes and their Applications, Elsevier, vol. 121(10), pages 2243-2271, October.
- Yang, Yadong & Shahbeik, Hossein & Shafizadeh, Alireza & Rafiee, Shahin & Hafezi, Amir & Du, Xinyi & Pan, Junting & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2023. "Predicting municipal solid waste gasification using machine learning: A step toward sustainable regional planning," Energy, Elsevier, vol. 278(PB).
- Ayub, Yousaf & Hu, Yusha & Ren, Jingzheng, 2023. "Estimation of syngas yield in hydrothermal gasification process by application of artificial intelligence models," Renewable Energy, Elsevier, vol. 215(C).
- Xingyue Jiang & Jianjun Hu & Meixia Jia & Yong Zheng, 2018. "Parameter Matching and Instantaneous Power Allocation for the Hybrid Energy Storage System of Pure Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-18, July.
- Kargbo, Hannah O. & Zhang, Jie & Phan, Anh N., 2021. "Optimisation of two-stage biomass gasification for hydrogen production via artificial neural network," Applied Energy, Elsevier, vol. 302(C).
- Ayub, Yousaf & Ren, Jingzheng & Shi, Tao & Shen, Weifeng & He, Chang, 2023. "Poultry litter valorization: Development and optimization of an electro-chemical and thermal tri-generation process using an extreme gradient boosting algorithm," Energy, Elsevier, vol. 263(PC).
- Silva, Isabelly P. & Lima, Rafael M.A. & Silva, Gabriel F. & Ruzene, Denise S. & Silva, Daniel P., 2019. "Thermodynamic equilibrium model based on stoichiometric method for biomass gasification: A review of model modifications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
- Mutlu, Ali Yener & Yucel, Ozgun, 2018. "An artificial intelligence based approach to predicting syngas composition for downdraft biomass gasification," Energy, Elsevier, vol. 165(PA), pages 895-901.
- Kim, Jun Young & Shin, Ui Hyeon & Kim, Kwangsu, 2023. "Predicting biomass composition and operating conditions in fluidized bed biomass gasifiers: An automated machine learning approach combined with cooperative game theory," Energy, Elsevier, vol. 280(C).
- Li, Bin & Magoua Mbeugang, Christian Fabrice & Huang, Yong & Liu, Dongjing & Wang, Qian & Zhang, Shu, 2022. "A review of CaO based catalysts for tar removal during biomass gasification," Energy, Elsevier, vol. 244(PB).
- Krzywanski, J. & Czakiert, T. & Nowak, W. & Shimizu, T. & Zylka, A. & Idziak, K. & Sosnowski, M. & Grabowska, K., 2022. "Gaseous emissions from advanced CLC and oxyfuel fluidized bed combustion of coal and biomass in a complex geometry facility:A comprehensive model," Energy, Elsevier, vol. 251(C).
- Shahbeik, Hossein & Rafiee, Shahin & Shafizadeh, Alireza & Jeddi, Dorsa & Jafary, Tahereh & Lam, Su Shiung & Pan, Junting & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2022. "Characterizing sludge pyrolysis by machine learning: Towards sustainable bioenergy production from wastes," Renewable Energy, Elsevier, vol. 199(C), pages 1078-1092.
- Babacar Gaye & Dezheng Zhang & Aziguli Wulamu, 2021. "Improvement of Support Vector Machine Algorithm in Big Data Background," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-9, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Escámez, Antonio & Aguado, Roque & Sánchez-Lozano, Daniel & Jurado, Francisco & Vera, David, 2025. "An ensemble multi-ANN approach for virtual oxygen sensing and air leakage prediction in biomass gasification plants," Renewable Energy, Elsevier, vol. 242(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Santhappan, Joseph Sekhar & Boddu, Muralikrishna & Gopinath, Arun S. & Mathimani, Thangavel, 2024. "Analysis of 27 supervised machine learning models for the co-gasification assessment of peanut shell and spent tea residue in an open-core downdraft gasifier," Renewable Energy, Elsevier, vol. 235(C).
- Qi, Jingwei & Wang, Yijie & Xu, Pengcheng & Hu, Ming & Huhe, Taoli & Ling, Xiang & Yuan, Haoran & Li, Jiadong & Chen, Yong, 2024. "Biomass hydrothermal gasification characteristics study: based on deep learning for data generation and screening strategies," Energy, Elsevier, vol. 312(C).
- Ayub, Yousaf & Hu, Yusha & Ren, Jingzheng, 2023. "Estimation of syngas yield in hydrothermal gasification process by application of artificial intelligence models," Renewable Energy, Elsevier, vol. 215(C).
- Ayub, Yousaf & Zhou, Jianzhao & Shen, Weifeng & Ren, Jingzheng, 2023. "Innovative valorization of biomass waste through integration of pyrolysis and gasification: Process design, optimization, and multi-scenario sustainability analysis," Energy, Elsevier, vol. 282(C).
- Qi, Jingwei & Wang, Yijie & Xu, Pengcheng & Hu, Ming & Huhe, Taoli & Ling, Xiang & Yuan, Haoran & Chen, Yong, 2024. "Study on the Co-gasification characteristics of biomass and municipal solid waste based on machine learning," Energy, Elsevier, vol. 290(C).
- Mu, Lin & Wang, Zhen & Sun, Meng & Shang, Yan & Pu, Hang & Dong, Ming, 2024. "Machine learning model with a novel self–adjustment method: A powerful tool for predicting biomass ash fusibility and enhancing its potential applications," Renewable Energy, Elsevier, vol. 237(PA).
- Olca, Kadriye Deniz & Yücel, Özgün, 2024. "Unveiling the potential of operating time in improving machine learning models’ performance for waste biomass gasification systems," Renewable Energy, Elsevier, vol. 237(PA).
- Yang, Yadong & Shahbeik, Hossein & Shafizadeh, Alireza & Masoudnia, Nima & Rafiee, Shahin & Zhang, Yijia & Pan, Junting & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2022. "Biomass microwave pyrolysis characterization by machine learning for sustainable rural biorefineries," Renewable Energy, Elsevier, vol. 201(P2), pages 70-86.
- Escámez, Antonio & Aguado, Roque & Sánchez-Lozano, Daniel & Jurado, Francisco & Vera, David, 2025. "An ensemble multi-ANN approach for virtual oxygen sensing and air leakage prediction in biomass gasification plants," Renewable Energy, Elsevier, vol. 242(C).
- Liu, Shanke & Yang, Yan & Yu, Lijun & Cao, Yu & Liu, Xinyi & Yao, Anqi & Cao, Yaping, 2023. "Self-heating optimization of integrated system of supercritical water gasification of biomass for power generation using artificial neural network combined with process simulation," Energy, Elsevier, vol. 272(C).
- Bhattarai, Ashish & Kafle, Sagar & Sakhakarmy, Manish & Moogi, Surendar & Adhikari, Sushil, 2024. "Fluidized-bed gasification kinetics model development using genetic algorithm for biomass, coal, municipal plastic waste, and their blends," Energy, Elsevier, vol. 313(C).
- Chen, Xiangmeng & Shafizadeh, Alireza & Shahbeik, Hossein & Nadian, Mohammad Hossein & Golvirdizadeh, Milad & Peng, Wanxi & Lam, Su Shiung & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2025. "Enhanced bio-oil production from biomass catalytic pyrolysis using machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
- Danijel Pavković & Mihael Cipek & Zdenko Kljaić & Tomislav Josip Mlinarić & Mario Hrgetić & Davor Zorc, 2018. "Damping Optimum-Based Design of Control Strategy Suitable for Battery/Ultracapacitor Electric Vehicles," Energies, MDPI, vol. 11(10), pages 1-26, October.
- Ma, Mingyan & Xu, Donghai & Gong, Xuehan & Diao, Yunfei & Feng, Peng & Kapusta, Krzysztof, 2023. "Municipal sewage sludge product recirculation catalytic pyrolysis mechanism from a kinetic perspective," Renewable Energy, Elsevier, vol. 215(C).
- Nikiforakis, Ioannis & Mamalis, Sotirios & Assanis, Dimitris, 2025. "Understanding Solid Oxide Fuel Cell Hybridization: A Critical Review," Applied Energy, Elsevier, vol. 377(PC).
- Yunpei Liang & Shuren Mao & Menghao Zheng & Quangui Li & Xiaoyu Li & Jianbo Li & Junjiang Zhou, 2023. "Study on the Prediction of Low-Index Coal and Gas Outburst Based on PSO-SVM," Energies, MDPI, vol. 16(16), pages 1-14, August.
- Ma, Liyang & Zhang, Lan & Wang, Deming & Xin, Haihui & Ma, Qiulin, 2023. "Effect of oxygen-supply on the reburning reactivity of pyrolyzed residual from sub-bituminous coal: A reactive force field molecular dynamics simulation," Energy, Elsevier, vol. 283(C).
- Ayiguzhali Tuluhong & Qingpu Chang & Lirong Xie & Zhisen Xu & Tengfei Song, 2024. "Current Status of Green Hydrogen Production Technology: A Review," Sustainability, MDPI, vol. 16(20), pages 1-47, October.
- Li, Longzhi & Cai, Dongqiang & Zhang, Lianjie & Zhang, Yue & Zhao, Zhiyang & Zhang, Zhonglei & Sun, Jifu & Tan, Yongdong & Zou, Guifu, 2023. "Synergistic effects during pyrolysis of binary mixtures of biomass components using microwave-assisted heating coupled with iron base tip-metal," Renewable Energy, Elsevier, vol. 203(C), pages 312-322.
- Gomes, Helena G.M.F. & Lopes, Daniela V. & Moura, Jéssica M. & Ribeiro, João P. & Cruz, Nuno C. & Matos, Manuel A.A. & Tarelho, Luís A.C., 2025. "Biomass fly ash granules as a promising catalyst to promote producer gas quality from residual forest biomass steam gasification," Energy, Elsevier, vol. 319(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6524-:d:1236893. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.