IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6307-d1229038.html
   My bibliography  Save this article

Cooperative Voltage and Frequency Regulation with Wind Farm: A Model-Based Offline Optimal Control Approach

Author

Listed:
  • Hua Li

    (Power Research Institute of State Grid Shaanxi Electric Power Company Limited, Xi’an 710100, China)

  • Xudong Li

    (Power Research Institute of State Grid Shaanxi Electric Power Company Limited, Xi’an 710100, China)

  • Weichen Xiong

    (Power Research Institute of State Grid Shaanxi Electric Power Company Limited, Xi’an 710100, China)

  • Yichen Yan

    (State Key Laboratory of Electrical Insulation and Power Equipment, Shaanxi Key Laboratory of Smart Grid, School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Yuanhang Zhang

    (State Key Laboratory of Electrical Insulation and Power Equipment, Shaanxi Key Laboratory of Smart Grid, School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Peng Kou

    (State Key Laboratory of Electrical Insulation and Power Equipment, Shaanxi Key Laboratory of Smart Grid, School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

Converter blocking is a serious malfunction encountered in high voltage direct current (HVDC) transmission systems. During sending-end converter blocking, the resultant active power and reactive power surplus in the sending-end power system lead to a severe increase in bus voltage and grid frequency. Consequently, this poses a substantial threat to the stability of the power system. Traditional control techniques generally control the frequency and voltage separately, which makes it challenging to regulate them jointly. This research paper introduces a collaborative approach for optimal control of voltage and frequency to address this issue. State space models for converter bus voltage and grid frequency prediction are developed using the bus voltage sensitivity matrices and system swing equation. The regulation of the converter bus voltage and grid frequency are intrinsically integrated using the explicit model predictive control (EMPC). When blocking occurs and results in an increase in the converter bus voltage and grid frequency, the EMPC controller regulates the output of active power and reactive power from the wind farm to realize the cooperative regulation of the converter bus voltage and grid frequency. The applicability and effectiveness of this strategy have been confirmed through simulation studies.

Suggested Citation

  • Hua Li & Xudong Li & Weichen Xiong & Yichen Yan & Yuanhang Zhang & Peng Kou, 2023. "Cooperative Voltage and Frequency Regulation with Wind Farm: A Model-Based Offline Optimal Control Approach," Energies, MDPI, vol. 16(17), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6307-:d:1229038
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6307/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6307/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pradhan, Chittaranjan & Bhende, Chandrashekhar Narayan & Samanta, Anik Kumar, 2018. "Adaptive virtual inertia-based frequency regulation in wind power systems," Renewable Energy, Elsevier, vol. 115(C), pages 558-574.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangwu Yan & Xuewei Sun, 2020. "Inertia and Droop Frequency Control Strategy of Doubly-Fed Induction Generator Based on Rotor Kinetic Energy and Supercapacitor," Energies, MDPI, vol. 13(14), pages 1-19, July.
    2. Wang, Huaizhi & Liu, Yangyang & Zhou, Bin & Voropai, Nikolai & Cao, Guangzhong & Jia, Youwei & Barakhtenko, Evgeny, 2020. "Advanced adaptive frequency support scheme for DFIG under cyber uncertainty," Renewable Energy, Elsevier, vol. 161(C), pages 98-109.
    3. Vasudevan, Krishnakumar R. & Ramachandaramurthy, Vigna K. & Venugopal, Gomathi & Guerrero, Josep M. & David Agundis Tinajero, Gibran, 2022. "Synergizing pico hydel and battery energy storage with adaptive synchronverter control for frequency regulation of autonomous microgrids," Applied Energy, Elsevier, vol. 325(C).
    4. Danny Ochoa & Sergio Martinez, 2021. "Analytical Approach to Understanding the Effects of Implementing Fast-Frequency Response by Wind Turbines on the Short-Term Operation of Power Systems," Energies, MDPI, vol. 14(12), pages 1-22, June.
    5. Ting-Hsuan Chien & Yu-Chuan Huang & Yuan-Yih Hsu, 2020. "Neural Network-Based Supplementary Frequency Controller for a DFIG Wind Farm," Energies, MDPI, vol. 13(20), pages 1-15, October.
    6. Tai Li & Leqiu Wang & Yanbo Wang & Guohai Liu & Zhiyu Zhu & Yongwei Zhang & Li Zhao & Zhicheng Ji, 2021. "Data-Driven Virtual Inertia Control Method of Doubly Fed Wind Turbine," Energies, MDPI, vol. 14(17), pages 1-18, September.
    7. Kheshti, Mostafa & Ding, Lei & Nayeripour, Majid & Wang, Xiaowei & Terzija, Vladimir, 2019. "Active power support of wind turbines for grid frequency events using a reliable power reference scheme," Renewable Energy, Elsevier, vol. 139(C), pages 1241-1254.
    8. Aksher Bhowon & Khaled M. Abo-Al-Ez & Marco Adonis, 2022. "Variable-Speed Wind Turbines for Grid Frequency Support: A Systematic Literature Review," Mathematics, MDPI, vol. 10(19), pages 1-25, October.
    9. Xing, Wei & Wang, Hewu & Lu, Languang & Han, Xuebing & Sun, Kai & Ouyang, Minggao, 2021. "An adaptive virtual inertia control strategy for distributed battery energy storage system in microgrids," Energy, Elsevier, vol. 233(C).
    10. Haixin Wang & Junyou Yang & Zhe Chen & Weichun Ge & Shiyan Hu & Yiming Ma & Yunlu Li & Guanfeng Zhang & Lijian Yang, 2018. "Gain Scheduled Torque Compensation of PMSG-Based Wind Turbine for Frequency Regulation in an Isolated Grid," Energies, MDPI, vol. 11(7), pages 1-19, June.
    11. Ayman B. Attya & Adam Vickers, 2021. "Operation and Control of a Hybrid Power Plant with the Capability of Grid Services Provision," Energies, MDPI, vol. 14(13), pages 1-15, June.
    12. Andrés Peña Asensio & Francisco Gonzalez-Longatt & Santiago Arnaltes & Jose Luis Rodríguez-Amenedo, 2020. "Analysis of the Converter Synchronizing Method for the Contribution of Battery Energy Storage Systems to Inertia Emulation," Energies, MDPI, vol. 13(6), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6307-:d:1229038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.