IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v325y2022ics0306261922010984.html
   My bibliography  Save this article

Synergizing pico hydel and battery energy storage with adaptive synchronverter control for frequency regulation of autonomous microgrids

Author

Listed:
  • Vasudevan, Krishnakumar R.
  • Ramachandaramurthy, Vigna K.
  • Venugopal, Gomathi
  • Guerrero, Josep M.
  • David Agundis Tinajero, Gibran

Abstract

The proliferation of renewable energy sources in autonomous microgrids has led to the deterioration of system inertia. In the past decade, the decrease in system inertia was addressed through numerous virtual synchronous generator (VSG) topologies. Synchronverter is one such control technique exhibiting promising performance as that of synchronous machines (SMs). Recently, myriad other modifications were carried out to enhance the capability of the synchronverter for better dynamic response. However, the limitations of fixed virtual inertia and damping coefficient were left untouched, which can be optimized for better frequency regulation of microgrids. Hence, this paper proposes an adaptive synchronverter (ASV) by optimizing OSV parameters through fuzzy logic. Subsequently, the proposed ASV was employed to control a novel pico hydel and battery hybrid energy storage for frequency regulation of the microgrid. The small-signal model of parallel operating ASVs is presented along with the eigenvalue analysis to prove the system stability under parameter variation. The MATLAB/Simulink simulation results revealed that the proposed ASV exhibited a lower rate of change of frequency and frequency nadir compared to the original synchronverter (OSV) and vector control (VC).

Suggested Citation

  • Vasudevan, Krishnakumar R. & Ramachandaramurthy, Vigna K. & Venugopal, Gomathi & Guerrero, Josep M. & David Agundis Tinajero, Gibran, 2022. "Synergizing pico hydel and battery energy storage with adaptive synchronverter control for frequency regulation of autonomous microgrids," Applied Energy, Elsevier, vol. 325(C).
  • Handle: RePEc:eee:appene:v:325:y:2022:i:c:s0306261922010984
    DOI: 10.1016/j.apenergy.2022.119827
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922010984
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119827?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anilkumar, T.T. & Simon, Sishaj P. & Padhy, Narayana Prasad, 2017. "Residential electricity cost minimization model through open well-pico turbine pumped storage system," Applied Energy, Elsevier, vol. 195(C), pages 23-35.
    2. Pradhan, Chittaranjan & Bhende, Chandrashekhar Narayan & Samanta, Anik Kumar, 2018. "Adaptive virtual inertia-based frequency regulation in wind power systems," Renewable Energy, Elsevier, vol. 115(C), pages 558-574.
    3. Fotouhi, Abbas & Auger, Daniel J. & Propp, Karsten & Longo, Stefano & Wild, Mark, 2016. "A review on electric vehicle battery modelling: From Lithium-ion toward Lithium–Sulphur," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1008-1021.
    4. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    5. Ma, Tao & Yang, Hongxing & Lu, Lin, 2015. "Development of hybrid battery–supercapacitor energy storage for remote area renewable energy systems," Applied Energy, Elsevier, vol. 153(C), pages 56-62.
    6. Li, Jianwei & Xiong, Rui & Yang, Qingqing & Liang, Fei & Zhang, Min & Yuan, Weijia, 2017. "Design/test of a hybrid energy storage system for primary frequency control using a dynamic droop method in an isolated microgrid power system," Applied Energy, Elsevier, vol. 201(C), pages 257-269.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Qixing & Xing, Dong & Alafnan, Hamoud & Pei, Xiaoze & Zhang, Min & Yuan, Weijia, 2019. "Design and test of a new two-stage control scheme for SMES-battery hybrid energy storage systems for microgrid applications," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    3. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Canales, Fausto A. & Lin, Shaoquan & Ahmed, Salman & Zhang, Yijie, 2021. "Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island," Renewable Energy, Elsevier, vol. 164(C), pages 1376-1394.
    4. Wu, Wei & Lin, Boqiang, 2018. "Application value of energy storage in power grid: A special case of China electricity market," Energy, Elsevier, vol. 165(PB), pages 1191-1199.
    5. Damdoum, Amel & Slama-Belkhodja, Ilhem & Pietrzak-David, Maria & Debbou, Mustapha, 2016. "Low voltage ride-through strategies for doubly fed induction machine pumped storage system under grid faults," Renewable Energy, Elsevier, vol. 95(C), pages 248-262.
    6. Pablo Fernández-Bustamante & Oscar Barambones & Isidro Calvo & Cristian Napole & Mohamed Derbeli, 2021. "Provision of Frequency Response from Wind Farms: A Review," Energies, MDPI, vol. 14(20), pages 1-24, October.
    7. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    8. Chong, Lee Wai & Wong, Yee Wan & Rajkumar, Rajprasad Kumar & Rajkumar, Rajpartiban Kumar & Isa, Dino, 2016. "Hybrid energy storage systems and control strategies for stand-alone renewable energy power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 174-189.
    9. Vasudevan, Krishnakumar R. & Ramachandaramurthy, Vigna K. & Venugopal, Gomathi & Ekanayake, J.B. & Tiong, S.K., 2021. "Variable speed pumped hydro storage: A review of converters, controls and energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Jacob, Ammu Susanna & Banerjee, Rangan & Ghosh, Prakash C., 2018. "Sizing of hybrid energy storage system for a PV based microgrid through design space approach," Applied Energy, Elsevier, vol. 212(C), pages 640-653.
    11. Akram, Umer & Nadarajah, Mithulananthan & Shah, Rakibuzzaman & Milano, Federico, 2020. "A review on rapid responsive energy storage technologies for frequency regulation in modern power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    12. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Khiadani, Mehdi & Das, Choton K., 2019. "An improved mathematical model for a pumped hydro storage system considering electrical, mechanical, and hydraulic losses," Applied Energy, Elsevier, vol. 247(C), pages 228-236.
    13. Lin, Boqiang & Wu, Wei, 2017. "Economic viability of battery energy storage and grid strategy: A special case of China electricity market," Energy, Elsevier, vol. 124(C), pages 423-434.
    14. Zhu, Wenhua H. & Tatarchuk, Bruce J., 2016. "Characterization of asymmetric ultracapacitors as hybrid pulse power devices for efficient energy storage and power delivery applications," Applied Energy, Elsevier, vol. 169(C), pages 460-468.
    15. Takele Ferede Agajie & Armand Fopah-Lele & Ahmed Ali & Isaac Amoussou & Baseem Khan & Mahmoud Elsisi & Wirnkar Basil Nsanyuy & Om Prakash Mahela & Roberto Marcelo Álvarez & Emmanuel Tanyi, 2023. "Integration of Superconducting Magnetic Energy Storage for Fast-Response Storage in a Hybrid Solar PV-Biogas with Pumped-Hydro Energy Storage Power Plant," Sustainability, MDPI, vol. 15(13), pages 1-30, July.
    16. Jafari, Mohammad & Malekjamshidi, Zahra & Zhu, Jianguo, 2019. "Design and development of a multi-winding high-frequency magnetic link for grid integration of residential renewable energy systems," Applied Energy, Elsevier, vol. 242(C), pages 1209-1225.
    17. Latif, Abdul & Hussain, S.M. Suhail & Das, Dulal Chandra & Ustun, Taha Selim, 2020. "State-of-the-art of controllers and soft computing techniques for regulated load frequency management of single/multi-area traditional and renewable energy based power systems," Applied Energy, Elsevier, vol. 266(C).
    18. Javed, Muhammad Shahzad & Zhong, Dan & Ma, Tao & Song, Aotian & Ahmed, Salman, 2020. "Hybrid pumped hydro and battery storage for renewable energy based power supply system," Applied Energy, Elsevier, vol. 257(C).
    19. Adrian Chmielewski & Jakub Możaryn & Piotr Piórkowski & Krzysztof Bogdziński, 2018. "Comparison of NARX and Dual Polarization Models for Estimation of the VRLA Battery Charging/Discharging Dynamics in Pulse Cycle," Energies, MDPI, vol. 11(11), pages 1-28, November.
    20. Mensah, Johnson Herlich Roslee & Santos, Ivan Felipe Silva dos & Raimundo, Danielle Rodrigues & Costa de Oliveira Botan, Maria Cláudia & Barros, Regina Mambeli & Tiago Filho, Geraldo Lucio, 2022. "Energy and economic study of using Pumped Hydropower Storage with renewable resources to recover the Furnas reservoir," Renewable Energy, Elsevier, vol. 199(C), pages 320-334.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:325:y:2022:i:c:s0306261922010984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.