IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6234-d1226826.html
   My bibliography  Save this article

Bayesian Optimization-Based LSTM for Short-Term Heating Load Forecasting

Author

Listed:
  • Binglin Li

    (School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun 130012, China)

  • Yong Shao

    (School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun 130012, China)

  • Yufeng Lian

    (School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun 130012, China)

  • Pai Li

    (School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun 130012, China)

  • Qiang Lei

    (School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun 130012, China)

Abstract

With the increase in population and the progress of industrialization, the rational use of energy in heating systems has become a research topic for many scholars. The accurate prediction of heat load in heating systems provides us with a scientific solution. Due to the complexity and difficulty of heat load forecasting in heating systems, this paper proposes a short-term heat load forecasting method based on a Bayesian algorithm-optimized long- and short-term memory network (BO-LSTM). The moving average data smoothing method is used to eliminate noise from the data. Pearson’s correlation analysis is used to determine the inputs to the model. Finally, the outdoor temperature and heat load of the previous period are selected as inputs to the model. The root mean square error (RMSE) is used as the main evaluation index, and the mean absolute error (MAE), mean bias error (MBE), and coefficient of determination (R 2 ) are used as auxiliary evaluation indexes. It was found that the RMSE of the asynchronous length model decreased, proving the general practicability of the method. In conclusion, the proposed prediction method is simple and universal.

Suggested Citation

  • Binglin Li & Yong Shao & Yufeng Lian & Pai Li & Qiang Lei, 2023. "Bayesian Optimization-Based LSTM for Short-Term Heating Load Forecasting," Energies, MDPI, vol. 16(17), pages 1-14, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6234-:d:1226826
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6234/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6234/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Protić, Milan & Shamshirband, Shahaboddin & Petković, Dalibor & Abbasi, Almas & Mat Kiah, Miss Laiha & Unar, Jawed Akhtar & Živković, Ljiljana & Raos, Miomir, 2015. "Forecasting of consumers heat load in district heating systems using the support vector machine with a discrete wavelet transform algorithm," Energy, Elsevier, vol. 87(C), pages 343-351.
    2. Gu, Jihao & Wang, Jin & Qi, Chengying & Min, Chunhua & Sundén, Bengt, 2018. "Medium-term heat load prediction for an existing residential building based on a wireless on-off control system," Energy, Elsevier, vol. 152(C), pages 709-718.
    3. Jing Zhao & Yu Shan, 2020. "A Fuzzy Control Strategy Using the Load Forecast for Air Conditioning System," Energies, MDPI, vol. 13(3), pages 1-17, January.
    4. Suryanarayana, Gowri & Lago, Jesus & Geysen, Davy & Aleksiejuk, Piotr & Johansson, Christian, 2018. "Thermal load forecasting in district heating networks using deep learning and advanced feature selection methods," Energy, Elsevier, vol. 157(C), pages 141-149.
    5. Jee-Heon Kim & Nam-Chul Seong & Wonchang Choi, 2019. "Cooling Load Forecasting via Predictive Optimization of a Nonlinear Autoregressive Exogenous (NARX) Neural Network Model," Sustainability, MDPI, vol. 11(23), pages 1-13, November.
    6. Malte Stienecker & Anne Hagemeier, 2023. "Developing Feedforward Neural Networks as Benchmark for Load Forecasting: Methodology Presentation and Application to Hospital Heat Load Forecasting," Energies, MDPI, vol. 16(4), pages 1-22, February.
    7. Dahl, Magnus & Brun, Adam & Andresen, Gorm B., 2017. "Using ensemble weather predictions in district heating operation and load forecasting," Applied Energy, Elsevier, vol. 193(C), pages 455-465.
    8. Hofmeister, Markus & Mosbach, Sebastian & Hammacher, Jörg & Blum, Martin & Röhrig, Gerd & Dörr, Christoph & Flegel, Volker & Bhave, Amit & Kraft, Markus, 2022. "Resource-optimised generation dispatch strategy for district heating systems using dynamic hierarchical optimisation," Applied Energy, Elsevier, vol. 305(C).
    9. Xiaoyu Gao & Chengying Qi & Guixiang Xue & Jiancai Song & Yahui Zhang & Shi-ang Yu, 2020. "Forecasting the Heat Load of Residential Buildings with Heat Metering Based on CEEMDAN-SVR," Energies, MDPI, vol. 13(22), pages 1-19, November.
    10. Magnus Dahl & Adam Brun & Oliver S. Kirsebom & Gorm B. Andresen, 2018. "Improving Short-Term Heat Load Forecasts with Calendar and Holiday Data," Energies, MDPI, vol. 11(7), pages 1-16, June.
    11. Bergsteinsson, Hjörleifur G. & Møller, Jan Kloppenborg & Nystrup, Peter & Pálsson, Ólafur Pétur & Guericke, Daniela & Madsen, Henrik, 2021. "Heat load forecasting using adaptive temporal hierarchies," Applied Energy, Elsevier, vol. 292(C).
    12. Shepero, Mahmoud & van der Meer, Dennis & Munkhammar, Joakim & Widén, Joakim, 2018. "Residential probabilistic load forecasting: A method using Gaussian process designed for electric load data," Applied Energy, Elsevier, vol. 218(C), pages 159-172.
    13. Nigitz, Thomas & Gölles, Markus, 2019. "A generally applicable, simple and adaptive forecasting method for the short-term heat load of consumers," Applied Energy, Elsevier, vol. 241(C), pages 73-81.
    14. Ibrahim Salem Jahan & Vaclav Snasel & Stanislav Misak, 2020. "Intelligent Systems for Power Load Forecasting: A Study Review," Energies, MDPI, vol. 13(22), pages 1-12, November.
    15. Wang, Lan & Lee, Eric W.M. & Yuen, Richard K.K., 2018. "Novel dynamic forecasting model for building cooling loads combining an artificial neural network and an ensemble approach," Applied Energy, Elsevier, vol. 228(C), pages 1740-1753.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Chunhua & Liu, Yanan & Gao, Xiaoyu & Wang, Jinda & Yang, Lan & Qi, Chengyong, 2022. "Research on control strategy integrated with characteristics of user's energy-saving behavior of district heating system," Energy, Elsevier, vol. 245(C).
    2. Xue, Puning & Jiang, Yi & Zhou, Zhigang & Chen, Xin & Fang, Xiumu & Liu, Jing, 2019. "Multi-step ahead forecasting of heat load in district heating systems using machine learning algorithms," Energy, Elsevier, vol. 188(C).
    3. Maciej Bujalski & Paweł Madejski, 2021. "Forecasting of Heat Production in Combined Heat and Power Plants Using Generalized Additive Models," Energies, MDPI, vol. 14(8), pages 1-15, April.
    4. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    5. Mengyao Lu & Guitao Xu & Jianjuan Yuan, 2023. "Installation Principle and Calculation Model of the Representative Indoor Temperature-Monitoring Points in Large-Scale Buildings," Energies, MDPI, vol. 16(17), pages 1-19, September.
    6. Yuan, Jianjuan & Huang, Ke & Han, Zhao & Wang, Chendong & Lu, Shilei & Zhou, Zhihua, 2022. "Evaluation of the operation data for improving the prediction accuracy of heating parameters in heating substation," Energy, Elsevier, vol. 238(PB).
    7. Kurek, Teresa & Bielecki, Artur & Świrski, Konrad & Wojdan, Konrad & Guzek, Michał & Białek, Jakub & Brzozowski, Rafał & Serafin, Rafał, 2021. "Heat demand forecasting algorithm for a Warsaw district heating network," Energy, Elsevier, vol. 217(C).
    8. Bergsteinsson, Hjörleifur G. & Sørensen, Mikkel Lindstrøm & Møller, Jan Kloppenborg & Madsen, Henrik, 2023. "Heat load forecasting using adaptive spatial hierarchies," Applied Energy, Elsevier, vol. 350(C).
    9. Yuan, Jianjuan & Wang, Chendong & Zhou, Zhihua, 2019. "Study on refined control and prediction model of district heating station based on support vector machine," Energy, Elsevier, vol. 189(C).
    10. Wang, Yanmin & Li, Zhiwei & Liu, Junjie & Pei, Mingzhe & Zhao, Yan & Lu, Xuan, 2023. "Data-driven analysis and prediction of indoor characteristic temperature in district heating systems," Energy, Elsevier, vol. 282(C).
    11. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
    12. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    13. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    14. Kristensen, Martin Heine & Hedegaard, Rasmus Elbæk & Petersen, Steffen, 2020. "Long-term forecasting of hourly district heating loads in urban areas using hierarchical archetype modeling," Energy, Elsevier, vol. 201(C).
    15. Gu, Jihao & Wang, Jin & Qi, Chengying & Min, Chunhua & Sundén, Bengt, 2018. "Medium-term heat load prediction for an existing residential building based on a wireless on-off control system," Energy, Elsevier, vol. 152(C), pages 709-718.
    16. Xue, Guixiang & Qi, Chengying & Li, Han & Kong, Xiangfei & Song, Jiancai, 2020. "Heating load prediction based on attention long short term memory: A case study of Xingtai," Energy, Elsevier, vol. 203(C).
    17. Ifaei, Pouya & Nazari-Heris, Morteza & Tayerani Charmchi, Amir Saman & Asadi, Somayeh & Yoo, ChangKyoo, 2023. "Sustainable energies and machine learning: An organized review of recent applications and challenges," Energy, Elsevier, vol. 266(C).
    18. Vogler–Finck, P.J.C. & Bacher, P. & Madsen, H., 2017. "Online short-term forecast of greenhouse heat load using a weather forecast service," Applied Energy, Elsevier, vol. 205(C), pages 1298-1310.
    19. F. Marta L. Di Lascio & Andrea Menapace & Maurizio Righetti, 2020. "Joint and conditional dependence modelling of peak district heating demand and outdoor temperature: a copula-based approach," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 373-395, June.
    20. Costanza Saletti & Mirko Morini & Agostino Gambarotta, 2020. "The Status of Research and Innovation on Heating and Cooling Networks as Smart Energy Systems within Horizon 2020," Energies, MDPI, vol. 13(11), pages 1-27, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6234-:d:1226826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.