IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i16p5966-d1216253.html
   My bibliography  Save this article

Suitability Analysis of the Deformation Behavior of Metal Corrugated Casing in High-Temperature Wellbore

Author

Listed:
  • Siqi Ren

    (Key Laboratory of In-Situ Property Improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
    The In-Situ Steam Injection Branch of State Center for Research and Development of Oil Shale Exploitation, Taiyuan University of Technology, Taiyuan 030024, China)

  • Jing Zhao

    (Key Laboratory of In-Situ Property Improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
    The In-Situ Steam Injection Branch of State Center for Research and Development of Oil Shale Exploitation, Taiyuan University of Technology, Taiyuan 030024, China)

  • Zhiqin Kang

    (Key Laboratory of In-Situ Property Improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
    The In-Situ Steam Injection Branch of State Center for Research and Development of Oil Shale Exploitation, Taiyuan University of Technology, Taiyuan 030024, China)

  • Guoying Wang

    (School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China)

  • Dong Yang

    (Key Laboratory of In-Situ Property Improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
    The In-Situ Steam Injection Branch of State Center for Research and Development of Oil Shale Exploitation, Taiyuan University of Technology, Taiyuan 030024, China)

Abstract

The stability of the casing is a crucial prerequisite for implementing the in situ high-temperature steam injection method in oil shale reservoirs. In order to address the issues of substantial expansion, concentrated thermal stresses, and susceptibility to damage observed in traditional straight casings under high temperatures, this paper proposes the utilization of a corrugated casing structure. In this regard, to investigate the impact of the shape and structure of the wellbore casing on its mechanical properties, identical corrugated and straight casings were selected and studied. Uniaxial compression and tensile tests were conducted on the casings, along with coordination deformation experiments between the casing and cement sheath under varying temperatures. Numerical simulations were employed to obtain the deformation characteristics of the corrugated and straight casings under axial compression and tension loads, as well as the stress distribution on the outer casing wall. The results showed that when subjected to the same amount of deformation under axial loading, the corrugated casing experienced lower compressive and tensile loads compared to the straight casing. Moreover, under the sole constraint of cement sheath, increasing the temperature led to lower vertical strains (perpendicular to the ground) at all measuring points of the corrugated casing as compared to the corresponding strains in the straight casing. Numerical simulations revealed that, under the same temperatures, the deformation at the interface between the corrugated casing and the cement sheath was smaller, while the vertical stress at the interface of the corrugated casing was also lower than the straight casing. Overall, the corrugated casing, with its corrugated structure that enabled micro-deformation, effectively mitigated the axial deformation of the casing caused by thermal expansion. Consequently, the corrugated casing reduced the extrusion of wellbore casing on the cement sheath, thereby preserving the integrity and stability of the wellbore cementing structure.

Suggested Citation

  • Siqi Ren & Jing Zhao & Zhiqin Kang & Guoying Wang & Dong Yang, 2023. "Suitability Analysis of the Deformation Behavior of Metal Corrugated Casing in High-Temperature Wellbore," Energies, MDPI, vol. 16(16), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5966-:d:1216253
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/16/5966/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/16/5966/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiang, X.M. & Han, X.X. & Cui, Z.G., 2007. "New technology for the comprehensive utilization of Chinese oil shale resources," Energy, Elsevier, vol. 32(5), pages 772-777.
    2. Kang, Zhiqin & Zhao, Yangsheng & Yang, Dong, 2020. "Review of oil shale in-situ conversion technology," Applied Energy, Elsevier, vol. 269(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niu, Daming & Sun, Pingchang & Ma, Lin & Zhao, Kang'an & Ding, Cong, 2023. "Porosity evolution of Minhe oil shale under an open rapid heating system and the carbon storage potentials," Renewable Energy, Elsevier, vol. 205(C), pages 783-799.
    2. Wang, Guoying & Liu, Shaowei & Yang, Dong & Fu, Mengxiong, 2022. "Numerical study on the in-situ pyrolysis process of steeply dipping oil shale deposits by injecting superheated water steam: A case study on Jimsar oil shale in Xinjiang, China," Energy, Elsevier, vol. 239(PC).
    3. Kang, Shijie & Sun, Youhong & Qiao, Mingyang & Li, Shengli & Deng, Sunhua & Guo, Wei & Li, Jiasheng & He, Wentong, 2022. "The enhancement on oil shale extraction of FeCl3 catalyst in subcritical water," Energy, Elsevier, vol. 238(PA).
    4. Hou, Hongjuan & Du, Qiongjie & Huang, Chang & Zhang, Le & Hu, Eric, 2021. "An oil shale recovery system powered by solar thermal energy," Energy, Elsevier, vol. 225(C).
    5. Kang, Shijie & Zhang, Shijing & Wang, Zhendong & Li, Shengli & Zhao, Fangci & Yang, Jie & Zhou, Lingbo & Deng, Yang & Sun, Guidong & Yu, Hongdong, 2023. "Highly efficient catalytic pyrolysis of oil shale by CaCl2 in subcritical water," Energy, Elsevier, vol. 274(C).
    6. Juan Jin & Jiandong Liu & Weidong Jiang & Wei Cheng & Xiaowen Zhang, 2022. "Evolution of the Anisotropic Thermal Conductivity of Oil Shale with Temperature and Its Relationship with Anisotropic Pore Structure Evolution," Energies, MDPI, vol. 15(21), pages 1-16, October.
    7. Rongsheng Zhao & Luquan Ren & Sunhua Deng & Youhong Sun & Zhiyong Chang, 2021. "Constrain on Oil Recovery Stage during Oil Shale Subcritical Water Extraction Process Based on Carbon Isotope Fractionation Character," Energies, MDPI, vol. 14(23), pages 1-12, November.
    8. Xudong Huang & Dong Yang & Zhiqin Kang, 2020. "Study on the Pore and Fracture Connectivity Characteristics of Oil Shale Pyrolyzed by Superheated Steam," Energies, MDPI, vol. 13(21), pages 1-14, November.
    9. Sergei Sabanov & Abdullah Rasheed Qureshi & Zhaudir Dauitbay & Gulim Kurmangazy, 2023. "A Method for the Modified Estimation of Oil Shale Mineable Reserves for Shale Oil Projects: A Case Study," Energies, MDPI, vol. 16(16), pages 1, August.
    10. Yongchun Cheng & Wensheng Wang & Guojin Tan & Chenglin Shi, 2018. "Assessing High- and Low-Temperature Properties of Asphalt Pavements Incorporating Waste Oil Shale as an Alternative Material in Jilin Province, China," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    11. Sun, Youhong & Bai, Fengtian & Lü, Xiaoshu & Jia, Chunxia & Wang, Qing & Guo, Mingyi & Li, Qiang & Guo, Wei, 2015. "Kinetic study of Huadian oil shale combustion using a multi-stage parallel reaction model," Energy, Elsevier, vol. 82(C), pages 705-713.
    12. Zhang, Shuo & Song, Shengyuan & Zhang, Wen & Zhao, Jinmin & Cao, Dongfang & Ma, Wenliang & Chen, Zijian & Hu, Ying, 2023. "Research on the inherent mechanism of rock mass deformation of oil shale in-situ mining under the condition of thermal-fluid-solid coupling," Energy, Elsevier, vol. 280(C).
    13. Han, X.X. & Jiang, X.M. & Cui, Z.G., 2009. "Studies of the effect of retorting factors on the yield of shale oil for a new comprehensive utilization technology of oil shale," Applied Energy, Elsevier, vol. 86(11), pages 2381-2385, November.
    14. Song, Xianzhi & Zhang, Chengkai & Shi, Yu & Li, Gensheng, 2019. "Production performance of oil shale in-situ conversion with multilateral wells," Energy, Elsevier, vol. 189(C).
    15. Cheng, Wen-Long & Huang, Yong-Hua & Lu, De-Tang & Yin, Hong-Ru, 2011. "A novel analytical transient heat-conduction time function for heat transfer in steam injection wells considering the wellbore heat capacity," Energy, Elsevier, vol. 36(7), pages 4080-4088.
    16. Yiwei Wang & Yuan Wang & Sunhua Deng & Qiang Li & Jingjing Gu & Haoche Shui & Wei Guo, 2022. "Numerical Simulation Analysis of Heating Effect of Downhole Methane Catalytic Combustion Heater under High Pressure," Energies, MDPI, vol. 15(3), pages 1-23, February.
    17. Zhang, Juan & Sun, Lulu & Zhang, Jiaqing & Ding, Yanming & Chen, Wenlu & Zhong, Yu, 2021. "Kinetic parameters estimation and reaction model modification for thermal degradation of Beizao oil shale based on thermogravimetric analysis coupled with deconvolution procedure," Energy, Elsevier, vol. 229(C).
    18. Zhang, Bowei & Zhao, Xiao & Zhang, Jie & Wang, Junying & Jin, Hui, 2023. "An investigation of the density of nano-confined subcritical/supercritical water," Energy, Elsevier, vol. 284(C).
    19. Wang, Lei & Yang, Dong & Zhang, Yuxing & Li, Wenqing & Kang, Zhiqin & Zhao, Yangsheng, 2022. "Research on the reaction mechanism and modification distance of oil shale during high-temperature water vapor pyrolysis," Energy, Elsevier, vol. 261(PB).
    20. Difei Zhao & Wei Zhang & Wanyu Xie & Chaowei Liu & Yingying Yang & Yingxing Chen & Chongyang Ren & Hongyu Chen & Qing Zhang & Sotiris Folinas, 2023. "Ecological Restoration and Transformation of Maoming Oil Shale Mining Area: Experience and Inspirations," Land, MDPI, vol. 12(2), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5966-:d:1216253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.