IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i16p5875-d1213066.html
   My bibliography  Save this article

TERA of Gas Turbine Propulsion Systems for RORO Ships

Author

Listed:
  • Abdulaziz M. T. Alzayedi

    (Thermal Power & Propulsion Engineering, Cranfield University, Cranfield MK43 0AL, UK
    Department of Automotive and Marine Engineering, College of Technological Studies, PAAET, P.O. Box 42325, Kuwait 70654, Kuwait)

  • Abdullah N. F. N. R. Alkhaledi

    (Thermal Power & Propulsion Engineering, Cranfield University, Cranfield MK43 0AL, UK
    Department of Automotive and Marine Engineering, College of Technological Studies, PAAET, P.O. Box 42325, Kuwait 70654, Kuwait)

  • Suresh Sampath

    (Thermal Power & Propulsion Engineering, Cranfield University, Cranfield MK43 0AL, UK)

  • Pericles Pilidis

    (Thermal Power & Propulsion Engineering, Cranfield University, Cranfield MK43 0AL, UK)

Abstract

Recently, regulations on emissions produced by vessels from international maritime organizations, along with the instability of fuel prices, have encouraged researchers to explore fuels and technology that are cleaner than heavy fuel oil and diesel engines. In this study, we employed the TERA method to evaluate the feasibility of using gas turbine engines with cleaner fuels as a replacement for diesel engines as a propulsion system for RORO ships. A sensitivity evaluation and risk assessment were also conducted to investigate the impact of applied emission taxes on the economic results. The findings indicated that the diesel engine emitted higher nitrogen oxide emissions than the gas turbine fuelled by natural gas and hydrogen. The gas turbine with hydrogen had zero carbon dioxide emissions, making it a sustainable energy production option. The economic aspects were evaluated based on an international route, and they revealed that economic profitability significantly depended on fuel costs and consumption. The diesel engine fuelled by marine diesel oil and the gas turbine fuelled by natural gas were economically attractive, whereas the gas turbine fuelled by hydrogen was less viable due to its high operating cost. However, in a scenario where a carbon dioxide tax was introduced, the gas turbine fuelled by hydrogen showed high potential as a low-risk investment compared to the other technologies. In summary, this study demonstrated the usefulness of the TERA method in the maritime sector for selecting and comparing various propulsion systems.

Suggested Citation

  • Abdulaziz M. T. Alzayedi & Abdullah N. F. N. R. Alkhaledi & Suresh Sampath & Pericles Pilidis, 2023. "TERA of Gas Turbine Propulsion Systems for RORO Ships," Energies, MDPI, vol. 16(16), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5875-:d:1213066
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/16/5875/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/16/5875/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdulaziz M. T. Alzayedi & Amit Batra & Suresh Sampath & Pericles Pilidis, 2022. "Techno-Environmental Mission Evaluation of Combined Cycle Gas Turbines for Large Container Ship Propulsion," Energies, MDPI, vol. 15(12), pages 1-13, June.
    2. Perčić, Maja & Vladimir, Nikola & Fan, Ailong, 2020. "Life-cycle cost assessment of alternative marine fuels to reduce the carbon footprint in short-sea shipping: A case study of Croatia," Applied Energy, Elsevier, vol. 279(C).
    3. Kwak, Dong-Hun & Heo, Jeong-Ho & Park, Seung-Ha & Seo, Seok-Jang & Kim, Jin-Kuk, 2018. "Energy-efficient design and optimization of boil-off gas (BOG) re-liquefaction process for liquefied natural gas (LNG)-fuelled ship," Energy, Elsevier, vol. 148(C), pages 915-929.
    4. Doulgeris, G. & Korakianitis, T. & Pilidis, P. & Tsoudis, E., 2012. "Techno-economic and environmental risk analysis for advanced marine propulsion systems," Applied Energy, Elsevier, vol. 99(C), pages 1-12.
    5. George, Dimopoulos G. & Eleftherios, Koukoulopoulos D. & Chariklia, Georgopoulou A., 2020. "LNG carrier two-stroke propulsion systems: A comparative study of state of the art reliquefaction technologies," Energy, Elsevier, vol. 195(C).
    6. Korberg, A.D. & Brynolf, S. & Grahn, M. & Skov, I.R., 2021. "Techno-economic assessment of advanced fuels and propulsion systems in future fossil-free ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    7. Armellini, A. & Daniotti, S. & Pinamonti, P. & Reini, M., 2018. "Evaluation of gas turbines as alternative energy production systems for a large cruise ship to meet new maritime regulations," Applied Energy, Elsevier, vol. 211(C), pages 306-317.
    8. Tzeu-Chen Han & Chih-Min Wang, 2021. "Shipping Bunker Cost Risk Assessment and Management during the Coronavirus Oil Shock," Sustainability, MDPI, vol. 13(9), pages 1-12, April.
    9. Abdulaziz M. T. Alzayedi & Suresh Sampath & Pericles Pilidis, 2022. "Techno–Economic and Risk Evaluation of Combined Cycle Propulsion Systems in Large Container Ships," Energies, MDPI, vol. 15(14), pages 1-14, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdulaziz M. T. Alzayedi & Suresh Sampath & Pericles Pilidis, 2022. "Techno–Economic and Risk Evaluation of Combined Cycle Propulsion Systems in Large Container Ships," Energies, MDPI, vol. 15(14), pages 1-14, July.
    2. Yin, Liang & Ju, Yonglin, 2020. "Conceptual design and analysis of a novel process for BOG re-liquefaction combined with absorption refrigeration cycle," Energy, Elsevier, vol. 205(C).
    3. Park, Chybyung & Jeong, Byongug & Zhou, Peilin, 2022. "Lifecycle energy solution of the electric propulsion ship with Live-Life cycle assessment for clean maritime economy," Applied Energy, Elsevier, vol. 328(C).
    4. Lee, Jaejun & Son, Heechang & Yu, Taejong & Oh, Juyoung & Park, Min Gyun & Lim, Youngsub, 2023. "Process design of advanced LNG subcooling system combined with a mixed refrigerant cycle," Energy, Elsevier, vol. 278(PA).
    5. George N. Sakalis & George J. Tzortzis & Christos A. Frangopoulos, 2019. "Intertemporal Static and Dynamic Optimization of Synthesis, Design, and Operation of Integrated Energy Systems of Ships," Energies, MDPI, vol. 12(5), pages 1-50, March.
    6. Wang, Tingsong & Cheng, Peiyue & Zhen, Lu, 2023. "Green development of the maritime industry: Overview, perspectives, and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    7. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos & Boulougouris, Evangelos, 2022. "Decision support methods for sustainable ship energy systems: A state-of-the-art review," Energy, Elsevier, vol. 239(PC).
    8. Perčić, Maja & Frković, Lovro & Pukšec, Tomislav & Ćosić, Boris & Li, Oi Lun & Vladimir, Nikola, 2022. "Life-cycle assessment and life-cycle cost assessment of power batteries for all-electric vessels for short-sea navigation," Energy, Elsevier, vol. 251(C).
    9. Fan, Ailong & Xiong, Yuqi & Yang, Liu & Zhang, Haiying & He, Yapeng, 2023. "Carbon footprint model and low–carbon pathway of inland shipping based on micro–macro analysis," Energy, Elsevier, vol. 263(PE).
    10. Yin, Liang & Ju, Yonglin, 2022. "Review on the design and optimization of BOG re-liquefaction process in LNG ship," Energy, Elsevier, vol. 244(PB).
    11. Bilgili, Levent, 2023. "A systematic review on the acceptance of alternative marine fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    12. Yan, Xinping & He, Yapeng & Fan, Ailong, 2023. "Carbon footprint prediction considering the evolution of alternative fuels and cargo: A case study of Yangtze river ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    13. Keuntae Lee & Deuk-Yong Koh & Junseok Ko & Hankil Yeom & Chang-Hyo Son & Jung-In Yoon, 2020. "Design and Performance Test of 2 kW Class Reverse Brayton Cryogenic System," Energies, MDPI, vol. 13(19), pages 1-13, September.
    14. Manuel Rodriguez Valido & Javier Perez Marrero & Argelio Mauro González & Peña Fabiani Bendicho & Carlos Efrem Mora, 2023. "Evaluation of the Potential of Sentinel-5P TROPOMI and AIS Marine Traffic Data for the Monitoring of Anthropogenic Activity and Maritime Transport NOx-Emissions in Canary Islands Waters," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    15. Lovro Frković & Boris Ćosić & Tomislav Pukšec & Nikola Vladimir, 2023. "Modelling of the Standalone Onshore Charging Station: The Nexus between Offshore Renewables and All-Electric Ships," Energies, MDPI, vol. 16(15), pages 1-16, August.
    16. Fan, Ailong & Wang, Junteng & He, Yapeng & Perčić, Maja & Vladimir, Nikola & Yang, Liu, 2021. "Decarbonising inland ship power system: Alternative solution and assessment method," Energy, Elsevier, vol. 226(C).
    17. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos, 2019. "Impact of carbon pricing on the cruise ship energy systems optimal configuration," Energy, Elsevier, vol. 175(C), pages 952-966.
    18. Cao, Xuewen & Yang, Jian & Zhang, Yue & Gao, Song & Bian, Jiang, 2022. "Process optimization, exergy and economic analysis of boil-off gas re-liquefaction processes for LNG carriers," Energy, Elsevier, vol. 242(C).
    19. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2024. "A solar-assisted liquefied biomethane production by anaerobic digestion: Dynamic simulations for harbors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    20. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Sforzini, Matteo & de Santoli, Livio, 2022. "Technical, economic and environmental issues related to electrolysers capacity targets according to the Italian Hydrogen Strategy: A critical analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5875-:d:1213066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.