IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i15p5679-d1205256.html
   My bibliography  Save this article

A Comprehensive Review of Flexible Power-Point-Tracking Algorithms for Grid-Connected Photovoltaic Systems

Author

Listed:
  • Sakshi Sharma

    (Department of Electrical & Electronics Engineering, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India)

  • Vibhu Jately

    (Department of Electrical & Electronics Engineering, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India)

  • Piyush Kuchhal

    (Department of Electrical & Electronics Engineering, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India)

  • Peeyush Kala

    (Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Delhi-NCR Campus, Ghaziabad 201204, India)

  • Brian Azzopardi

    (MCAST Energy Research Group, Institute of Engineering and Transport, Malta College of Arts, Science and Technology (MCAST), Main Campus, Corradino Hill, PLA 9032 Paola, Malta
    The Foundation for Innovation and Research—Malta, 65 Design Centre Level 2, Tower Road, BKR 4012 Birkirkara, Malta)

Abstract

The rapid increase in the penetration of photovoltaic (PV) power plants results in an increased risk of grid failure, primarily due to the intermittent nature of the plant. To overcome this problem, the flexible power point tracking (FPPT) algorithm has been proposed in the literature over the maximum power point tracking (MPPT) algorithm. These algorithms regulate the PV power to a certain value instead of continuously monitoring the maximum power point (MPP). The proposed work carries out a detailed comparative study of various constant power generation (CPG) control strategies. The control strategies are categorized in terms of current-, voltage-, and power-based tracking capabilities. The comparative analysis of various reported CPG/FPPT techniques was carried out. This analysis was based on some key performance indices, such as the type of control strategy, irradiance pattern, variation in G, region of operation, speed of tracking, steady-state power oscillations, drift severity scenario, partial shading scenario, implementation complexity, stability, fast dynamic response, robustness, reactive power, cost, and tracking efficiency. Among existing FPPT algorithms, model-based control has a superior performance in terms of tracking speed and low steady-state power oscillations, with a maximum tracking efficiency of 98.57%.

Suggested Citation

  • Sakshi Sharma & Vibhu Jately & Piyush Kuchhal & Peeyush Kala & Brian Azzopardi, 2023. "A Comprehensive Review of Flexible Power-Point-Tracking Algorithms for Grid-Connected Photovoltaic Systems," Energies, MDPI, vol. 16(15), pages 1-28, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5679-:d:1205256
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/15/5679/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/15/5679/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chinchilla, M. & Arnalte, S. & Burgos, J.C. & Rodríguez, J.L., 2006. "Power limits of grid-connected modern wind energy systems," Renewable Energy, Elsevier, vol. 31(9), pages 1455-1470.
    2. Jately, V. & Arora, S., 2017. "Development of a dual-tracking technique for extracting maximum power from PV systems under rapidly changing environmental conditions," Energy, Elsevier, vol. 133(C), pages 557-571.
    3. Hou, Guolian & Ke, Yin & Huang, Congzhi, 2021. "A flexible constant power generation scheme for photovoltaic system by error-based active disturbance rejection control and perturb & observe," Energy, Elsevier, vol. 237(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Obeidi, Nabil & Kermadi, Mostefa & Belmadani, Bachir & Allag, Abdelkrim & Achour, Lazhar & Mesbahi, Nadhir & Mekhilef, Saad, 2023. "A modified current sensorless approach for maximum power point tracking of partially shaded photovoltaic systems," Energy, Elsevier, vol. 263(PA).
    2. Jose Miguel Riquelme-Dominguez & Jesús Riquelme & Sergio Martinez, 2022. "New Trends in the Control of Grid-Connected Photovoltaic Systems for the Provision of Ancillary Services," Energies, MDPI, vol. 15(21), pages 1-11, October.
    3. Xu, Jiuping & Liu, Tingting, 2020. "Technological paradigm-based approaches towards challenges and policy shifts for sustainable wind energy development," Energy Policy, Elsevier, vol. 142(C).
    4. Zeno, Aldrich & Orillaza, Jordan Rel & Kolhe, Mohan Lal, 2020. "Analysing the effects of power swing on wind farms using instantaneous impedances," Renewable Energy, Elsevier, vol. 147(P1), pages 1432-1452.
    5. Jately, Vibhu & Azzopardi, Brian & Joshi, Jyoti & Venkateswaran V, Balaji & Sharma, Abhinav & Arora, Sudha, 2021. "Experimental Analysis of hill-climbing MPPT algorithms under low irradiance levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Ahmad Taher Azar & Azher M. Abed & Farah Ayad Abdulmajeed & Ibrahim A. Hameed & Nashwa Ahmad Kamal & Anwar Jaafar Mohamad Jawad & Ali Hashim Abbas & Zainab Abdulateef Rashed & Zahraa Sabah Hashim & Mo, 2022. "A New Nonlinear Controller for the Maximum Power Point Tracking of Photovoltaic Systems in Micro Grid Applications Based on Modified Anti-Disturbance Compensation," Sustainability, MDPI, vol. 14(17), pages 1-25, August.
    7. Osmani, Khaled & Haddad, Ahmad & Lemenand, Thierry & Castanier, Bruno & Ramadan, Mohamad, 2021. "An investigation on maximum power extraction algorithms from PV systems with corresponding DC-DC converters," Energy, Elsevier, vol. 224(C).
    8. Hou, Guolian & Huang, Ting & Huang, Congzhi, 2023. "Flexibility improvement of 1000 MW ultra-supercritical unit under full operating conditions by error-based ADRC and fast pigeon-inspired optimizer," Energy, Elsevier, vol. 270(C).
    9. Hou, Guolian & Huang, Ting & Zheng, Fumeng & Gong, Linjuan & Huang, Congzhi & Zhang, Jianhua, 2023. "Application of multi-agent EADRC in flexible operation of combined heat and power plant considering carbon emission and economy," Energy, Elsevier, vol. 263(PB).
    10. Fernandez, L.M. & Garcia, C.A. & Jurado, F., 2010. "Operating capability as a PQ/PV node of a direct-drive wind turbine based on a permanent magnet synchronous generator," Renewable Energy, Elsevier, vol. 35(6), pages 1308-1318.
    11. Zhang, Xiaoshun & Li, Shengnan & He, Tingyi & Yang, Bo & Yu, Tao & Li, Haofei & Jiang, Lin & Sun, Liming, 2019. "Memetic reinforcement learning based maximum power point tracking design for PV systems under partial shading condition," Energy, Elsevier, vol. 174(C), pages 1079-1090.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5679-:d:1205256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.