IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5518-d1198909.html
   My bibliography  Save this article

Analysis of the Contribution of China’s Car-Sharing Service to Carbon Emission Reduction

Author

Listed:
  • Xinyue Cao

    (State Key Laboratory of Building Safety and Built Environment and National Engineering Research Center of Building Technology, China Academy of Building Research, Beijing 100029, China
    School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China)

  • Haizhu Zhou

    (State Key Laboratory of Building Safety and Built Environment and National Engineering Research Center of Building Technology, China Academy of Building Research, Beijing 100029, China
    China Academy of Building Research, Beijing 100010, China)

  • Han Li

    (School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China)

  • Xiangfei Kong

    (School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China)

Abstract

In light of carbon peak and carbon neutrality goals, China has attached great importance to energy savings and carbon reduction. Carbon reduction in the transport sector is critical to achieving the two-carbon target, as it accounts for 9.41% of total carbon emissions. As the sharing economy grows, car sharing is considered to present excellent carbon reduction potential in the transportation sector. However, the current research is focused on car sharing usage, with a lack of research on the carbon reduction capability of car sharing in China. Hence, this study aims to investigate the carbon reduction capacity of car sharing, including usage rates of car-share services and changes in travel behavior, through an online questionnaire combined with carbon emission data from the transportation sector. The study aims to analyze the contribution of car-share services to carbon reduction in the transportation sector under the current model. The well-to-wheel (WTW) approach is employed, including the energy consumption of vehicles and carbon emissions in the production process. The research results indicate that the introduction of car-sharing services increases driving energy consumption; however, this increase is offset by the decrease in carbon emissions as a result of the production process. Therefore, the overall effect is a reduction in carbon emissions of 1.058971 million tons in 2021, accounting for 1.95 percent of total transport carbon emissions. In addition, the impact on different modes on carbon emission reduction is also explored in this study. The results demonstrate that the private car disposal rate shows the most significant influence on traffic carbon emissions; a 10% reduction in the number of private cars can lead to a 2.48% carbon reduction. The relevant conclusions of this study can provide support for the future development of car sharing in China and the reduction of carbon emissions in the transportation sector.

Suggested Citation

  • Xinyue Cao & Haizhu Zhou & Han Li & Xiangfei Kong, 2023. "Analysis of the Contribution of China’s Car-Sharing Service to Carbon Emission Reduction," Energies, MDPI, vol. 16(14), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5518-:d:1198909
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5518/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5518/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shichao Sun & Yuanqian Liu & Yukun Yao & Zhengyu Duan & Xiaokun Wang, 2021. "The Determinants to Promote College Students’ Use of Car-Sharing: An Empirical Study at Dalian Maritime University, China," Sustainability, MDPI, vol. 13(12), pages 1-12, June.
    2. Shaheen, Susan A & Cohen, Adam P, 2007. "Growth in Worldwide Carsharing: An International Comparison," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2zv240pp, Institute of Transportation Studies, UC Berkeley.
    3. Martin, Chris J. & Upham, Paul & Budd, Leslie, 2015. "Commercial orientation in grassroots social innovation: Insights from the sharing economy," Ecological Economics, Elsevier, vol. 118(C), pages 240-251.
    4. Prieto, Marc & Baltas, George & Stan, Valentina, 2017. "Car sharing adoption intention in urban areas: What are the key sociodemographic drivers?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 218-227.
    5. Mounce, Richard & Nelson, John D., 2019. "On the potential for one-way electric vehicle car-sharing in future mobility systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 17-30.
    6. Inese Mavlutova & Jekaterina Kuzmina & Inga Uvarova & Dzintra Atstaja & Kristaps Lesinskis & Elina Mikelsone & Janis Brizga, 2021. "Does Car Sharing Contribute to Urban Sustainability from User-Motivation Perspectives?," Sustainability, MDPI, vol. 13(19), pages 1-20, September.
    7. Jiyeon Jung & Yoonmo Koo, 2018. "Analyzing the Effects of Car Sharing Services on the Reduction of Greenhouse Gas (GHG) Emissions," Sustainability, MDPI, vol. 10(2), pages 1-17, February.
    8. Zhou, Fan & Zheng, Zuduo & Whitehead, Jake & Perrons, Robert K. & Washington, Simon & Page, Lionel, 2020. "Examining the impact of car-sharing on private vehicle ownership," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 322-341.
    9. Ana María Arbeláez Vélez & Andrius Plepys, 2021. "Car Sharing as a Strategy to Address GHG Emissions in the Transport System: Evaluation of Effects of Car Sharing in Amsterdam," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
    10. Becker, Henrik & Balac, Milos & Ciari, Francesco & Axhausen, Kay W., 2020. "Assessing the welfare impacts of Shared Mobility and Mobility as a Service (MaaS)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 228-243.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Golalikhani, Masoud & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando & Antunes, António Pais, 2021. "Carsharing: A review of academic literature and business practices toward an integrated decision-support framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    2. Andrzej Bąk & Elżbieta Nawrocka & Daria E. Jaremen, 2022. "“Sustainability” as a Motive for Choosing Shared-Mobility Services: The Case of Polish Consumers of Uber Services," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    3. Fei Ma & Dan Guo & Kum Fai Yuen & Qipeng Sun & Fuxia Ren & Xiaobo Xu & Chengyong Zhao, 2020. "The Influence of Continuous Improvement of Public Car-Sharing Platforms on Passenger Loyalty: A Mediation and Moderation Analysis," IJERPH, MDPI, vol. 17(8), pages 1-21, April.
    4. Vasja Roblek & Maja Meško & Iztok Podbregar, 2021. "Impact of Car Sharing on Urban Sustainability," Sustainability, MDPI, vol. 13(2), pages 1-19, January.
    5. Qian Duan & Xin Ye & Jian Li & Ke Wang, 2020. "Empirical Modeling Analysis of Potential Commute Demand for Carsharing in Shanghai, China," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    6. Yan Zhou & Sangmoon Park, 2020. "The Regional Determinants of the New Venture Formation in China’s Car-Sharing Economy," Sustainability, MDPI, vol. 13(1), pages 1-22, December.
    7. Liu, Zhiyong & Li, Ruimin & Dai, Jingchen, 2022. "Effects and feasibility of shared mobility with shared autonomous vehicles: An investigation based on data-driven modeling approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 206-226.
    8. Weibo Li & Maria Kamargianni, 2020. "Steering short-term demand for car-sharing: a mode choice and policy impact analysis by trip distance," Transportation, Springer, vol. 47(5), pages 2233-2265, October.
    9. Zhou, Fan & Zheng, Zuduo & Whitehead, Jake & Washington, Simon & Perrons, Robert K. & Page, Lionel, 2020. "Preference heterogeneity in mode choice for car-sharing and shared automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 633-650.
    10. Irfan Ullah & Kai Liu & Tran Vanduy, 2019. "Examining Travelers’ Acceptance towards Car Sharing Systems—Peshawar City, Pakistan," Sustainability, MDPI, vol. 11(3), pages 1-16, February.
    11. Silvestri, Alessandro & Foudi, Sébastien & Galarraga, Ibon & Ansuategi, Alberto, 2021. "The contribution of carsharing to low carbon mobility: Complementarity and substitution with other modes," Research in Transportation Economics, Elsevier, vol. 85(C).
    12. Yoon-Young Chun & Mitsutaka Matsumoto & Kiyotaka Tahara & Kenichiro Chinen & Hideki Endo, 2019. "Exploring Factors Affecting Car Sharing Use Intention in the Southeast-Asia Region: A Case Study in Java, Indonesia," Sustainability, MDPI, vol. 11(18), pages 1-26, September.
    13. Narayanan, Santhanakrishnan & Antoniou, Constantinos, 2022. "Expansion of a small-scale car-sharing service: A multi-method framework for demand characterization and derivation of policy insights," Journal of Transport Geography, Elsevier, vol. 104(C).
    14. Narayanan, Santhanakrishnan & Antoniou, Constantinos, 2023. "Shared mobility services towards Mobility as a Service (MaaS): What, who and when?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 168(C).
    15. Yanhong Yin & Han Wang & Jimin Xiong & Yufeng Zhu & Zhanfeng Tang, 2021. "Estimation of optimum supply of shared cars based on personal travel behaviors in condition of minimum energy consumption," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13324-13339, September.
    16. Sohani Liyanage & Hussein Dia & Rusul Abduljabbar & Saeed Asadi Bagloee, 2019. "Flexible Mobility On-Demand: An Environmental Scan," Sustainability, MDPI, vol. 11(5), pages 1-39, February.
    17. Shichao Sun & Yuanqian Liu & Yukun Yao & Zhengyu Duan & Xiaokun Wang, 2021. "The Determinants to Promote College Students’ Use of Car-Sharing: An Empirical Study at Dalian Maritime University, China," Sustainability, MDPI, vol. 13(12), pages 1-12, June.
    18. Curtale, Riccardo & Liao, Feixiong & van der Waerden, Peter, 2021. "User acceptance of electric car-sharing services: The case of the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 266-282.
    19. Tsouros, Ioannis & Tsirimpa, Athena & Pagoni, Ioanna & Polydoropoulou, Amalia, 2021. "MaaS users: Who they are and how much they are willing-to-pay," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 470-480.
    20. Pierpaolo D’Urso & Alessio Guandalini & Francesca Romana Mallamaci & Vincenzina Vitale & Laura Bocci, 2021. "To Share or not to Share? Determinants of Sharing Mobility in Italy," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 154(2), pages 647-692, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5518-:d:1198909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.