IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5362-d1193868.html
   My bibliography  Save this article

Pitting and Strip Corrosion Influence on Casing Strength of Salt Cavern Compressed Air Energy Storage

Author

Listed:
  • Jifang Wan

    (China Energy Digital Technology Group Co., Ltd., Beijing 100044, China
    CNPC Engineering Technology R&D Company Limited, Beijing 102206, China)

  • Wendong Ji

    (China Energy Digital Technology Group Co., Ltd., Beijing 100044, China)

  • Yuxian He

    (School of Mechanical Engineering, Yangtze University, Jingzhou 434023, China)

  • Jingcui Li

    (China Energy Digital Technology Group Co., Ltd., Beijing 100044, China
    CNPC Engineering Technology R&D Company Limited, Beijing 102206, China)

  • Ye Gao

    (Beijing Petroleum Machinery Co., Ltd., Beijing 102206, China)

Abstract

In response to the localized corrosion generated by underground casing, which seriously affects the safe operation of salt cavern compressed air storage, we used commercial finite element software, ANSYS, to propose a partial model applicable to casings with pitting and strip corrosion. The results show that the pitting depth of the casing is closely related to fracture and collapse pressure. As pitting corrosion depth increases, its effect on fracture and collapse pressure becomes more significant. The greater the number of corrosion pits, the lower the compressive strength of the casing, and the casing tends to be more prone to fracture. The area with large stress is mainly distributed along the long axis of the strip corrosion. In the short axis of the strip corrosion, there is no stress concentration and appears as a low stress region. The effect of strip corrosion depth on failure pressure is greater than the effect of strip corrosion length. In this work, we developed a method to predict residual strength, which is useful to assess not only well integrity but, additionally, safety of the casing used during petroleum and natural gas exploration and production.

Suggested Citation

  • Jifang Wan & Wendong Ji & Yuxian He & Jingcui Li & Ye Gao, 2023. "Pitting and Strip Corrosion Influence on Casing Strength of Salt Cavern Compressed Air Energy Storage," Energies, MDPI, vol. 16(14), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5362-:d:1193868
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5362/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5362/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel Pottie & Bruno Cardenas & Seamus Garvey & James Rouse & Edward Hough & Audrius Bagdanavicius & Edward Barbour, 2023. "Comparative Analysis of Isochoric and Isobaric Adiabatic Compressed Air Energy Storage," Energies, MDPI, vol. 16(6), pages 1-18, March.
    2. Jingcui Li & Jifang Wan & Hangming Liu & Maria Jose Jurado & Yuxian He & Guangjie Yuan & Yan Xia, 2022. "Stability Analysis of a Typical Salt Cavern Gas Storage in the Jintan Area of China," Energies, MDPI, vol. 15(11), pages 1-15, June.
    3. Alirahmi, Seyed Mojtaba & Razmi, Amir Reza & Arabkoohsar, Ahmad, 2021. "Comprehensive assessment and multi-objective optimization of a green concept based on a combination of hydrogen and compressed air energy storage (CAES) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Razmi, Amir Reza & Hanifi, Amir Reza & Shahbakhti, Mahdi, 2023. "Design, thermodynamic, and economic analyses of a green hydrogen storage concept based on solid oxide electrolyzer/fuel cells and heliostat solar field," Renewable Energy, Elsevier, vol. 215(C).
    3. Dib, Ghady & Haberschill, Philippe & Rullière, Romuald & Revellin, Rémi, 2021. "Modelling small-scale trigenerative advanced adiabatic compressed air energy storage for building application," Energy, Elsevier, vol. 237(C).
    4. Chen, Hao & Wang, Huanran & Li, Ruixiong & Sun, Hao & Ge, Gangqiang & Ling, Lanning, 2022. "Experimental and analytical investigation of near-isothermal pumped hydro-compressed air energy storage system," Energy, Elsevier, vol. 249(C).
    5. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    6. Ebrahimi-Moghadam, Amir & Farzaneh-Gord, Mahmood, 2022. "Optimal operation of a multi-generation district energy hub based on electrical, heating, and cooling demands and hydrogen production," Applied Energy, Elsevier, vol. 309(C).
    7. Zolfaghari, Seyed Mohammad & Soltani, M. & Hosseinpour, Morteza & Nathwani, Jatin, 2023. "Comprehensive analysis of geothermal energy integration with heavy oil upgrading in hot compressed water," Applied Energy, Elsevier, vol. 345(C).
    8. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    9. Su, Dawei, 2022. "Comprehensive thermodynamic and exergoeconomic analyses and multi-objective optimization of a compressed air energy storage hybridized with a parabolic trough solar collectors," Energy, Elsevier, vol. 244(PA).
    10. Yi Zhang & Kun Zhang & Jun Li & Yang Luo & Li-Na Ran & Lian-Qi Sheng & Er-Dong Yao, 2023. "Study on Secondary Brine Drainage and Sand Control Technology of Salt Cavern Gas Storage," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    11. Vansh Vyas & Hyun-woo Jeon & Chao Wang, 2021. "An Integrated Energy Simulation Model of a Compressed Air System for Sustainable Manufacturing: A Time-Discretized Approach," Sustainability, MDPI, vol. 13(18), pages 1-28, September.
    12. Li, Hongze & Sun, Dongyang & Li, Bingkang & Wang, Xuejie & Zhao, Yihang & Wei, Mengru & Dang, Xiaolu, 2023. "Collaborative optimization of VRB-PS hybrid energy storage system for large-scale wind power grid integration," Energy, Elsevier, vol. 265(C).
    13. Müller, Leander A. & Leonard, Alycia & Trotter, Philipp A. & Hirmer, Stephanie, 2023. "Green hydrogen production and use in low- and middle-income countries: A least-cost geospatial modelling approach applied to Kenya," Applied Energy, Elsevier, vol. 343(C).
    14. Xue, Xiaojun & Li, Jiarui & Liu, Jun & Wu, Yunyun & Chen, Heng & Xu, Gang & Liu, Tong, 2022. "Performance evaluation of a conceptual compressed air energy storage system coupled with a biomass integrated gasification combined cycle," Energy, Elsevier, vol. 247(C).
    15. Ahmed, Faraedoon & Al Kez, Dlzar & McLoone, Seán & Best, Robert James & Cameron, Ché & Foley, Aoife, 2023. "Dynamic grid stability in low carbon power systems with minimum inertia," Renewable Energy, Elsevier, vol. 210(C), pages 486-506.
    16. Xia, Tian & Li, Yaowang & Zhang, Ning & Kang, Chongqing, 2022. "Role of compressed air energy storage in urban integrated energy systems with increasing wind penetration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    17. Xinbo Zhao & Heng Chen & Jian Lv & Xiaohong He & Yiwei Qin & Keming Sun, 2023. "Triaxial Creep Damage Model for Salt Rock Based on Fractional Derivative," Sustainability, MDPI, vol. 15(13), pages 1-18, June.
    18. Xue, Xiaojun & Lu, Di & Liu, Yifan & Chen, Heng & Pan, Peiyuan & Xu, Gang & Zhou, Zunkai & Dong, Yuehong, 2023. "Thermodynamic and economic analysis of new compressed air energy storage system integrated with water electrolysis and H2-Fueled solid oxide fuel cell," Energy, Elsevier, vol. 263(PE).
    19. Xu, Qingqing & Wu, Yuhang & Zheng, Wenpei & Gong, Yunhua & Dubljevic, Stevan, 2023. "Modeling and dynamic safety control of compressed air energy storage system," Renewable Energy, Elsevier, vol. 208(C), pages 203-213.
    20. Bai, Hao & Luo, ShiHao & Zhao, Xijie & Zhao, Gen & Gao, Yang, 2022. "Comprehensive assessment of a green cogeneration system based on compressed air energy storage (CAES) and zeotropic mixtures," Energy, Elsevier, vol. 254(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5362-:d:1193868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.