IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5293-d1191090.html
   My bibliography  Save this article

Convolutional Autoencoder-Based Anomaly Detection for Photovoltaic Power Forecasting of Virtual Power Plants

Author

Listed:
  • Taeseop Park

    (Department of Electronic Engineering, Sogang University, Seoul 04107, Republic of Korea)

  • Keunju Song

    (Department of Electronic Engineering, Sogang University, Seoul 04107, Republic of Korea)

  • Jaeik Jeong

    (Energy ICT Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea)

  • Hongseok Kim

    (Department of Electronic Engineering, Sogang University, Seoul 04107, Republic of Korea)

Abstract

Machine learning-based time-series forecasting has recently been intensively studied. Deep learning (DL), specifically deep neural networks (DNN) and long short-term memory (LSTM), are the popular approaches for this purpose. However, these methods have several problems. First, DNN needs a lot of data to avoid over-fitting. Without sufficient data, the model cannot be generalized so it may not be good for unseen data. Second, impaired data affect forecasting accuracy. In general, one trains a model assuming that normal data enters the input. However, when anomalous data enters the input, the forecasting accuracy of the model may decrease substantially, which emphasizes the importance of data integrity. This paper focuses on these two problems. In time-series forecasting, especially for photovoltaic (PV) forecasting, data from solar power plants are not sufficient. As solar panels are newly installed, a sufficiently long period of data cannot be obtained. We also find that many solar power plants may contain a substantial amount of anomalous data, e.g., 30%. In this regard, we propose a data preprocessing technique leveraging convolutional autoencoder and principal component analysis (PCA) to use insufficient data with a high rate of anomaly. We compare the performance of the PV forecasting model after applying the proposed anomaly detection in constructing a virtual power plant (VPP). Extensive experiments with 2517 PV sites in the Republic of Korea, which are used for VPP construction, confirm that the proposed technique can filter out anomaly PV sites with very high accuracy, e.g., 99%, which in turn contributes to reducing the forecasting error by 23%.

Suggested Citation

  • Taeseop Park & Keunju Song & Jaeik Jeong & Hongseok Kim, 2023. "Convolutional Autoencoder-Based Anomaly Detection for Photovoltaic Power Forecasting of Virtual Power Plants," Energies, MDPI, vol. 16(14), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5293-:d:1191090
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5293/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5293/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Niklas Höhne & Matthew J. Gidden & Michel Elzen & Frederic Hans & Claire Fyson & Andreas Geiges & M. Louise Jeffery & Sofia Gonzales-Zuñiga & Silke Mooldijk & William Hare & Joeri Rogelj, 2021. "Wave of net zero emission targets opens window to meeting the Paris Agreement," Nature Climate Change, Nature, vol. 11(10), pages 820-822, October.
    2. Dincer, Ibrahim, 2000. "Renewable energy and sustainable development: a crucial review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(2), pages 157-175, June.
    3. Mariam Ibrahim & Ahmad Alsheikh & Feras M. Awaysheh & Mohammad Dahman Alshehri, 2022. "Machine Learning Schemes for Anomaly Detection in Solar Power Plants," Energies, MDPI, vol. 15(3), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen-Chang Tsai & Chia-Sheng Tu & Chih-Ming Hong & Whei-Min Lin, 2023. "A Review of State-of-the-Art and Short-Term Forecasting Models for Solar PV Power Generation," Energies, MDPI, vol. 16(14), pages 1-30, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liping Zhao & Xincheng Li & Xiangmei Li & Chenyang Ai, 2022. "Dynamic Changes and Regional Differences of Net Carbon Sequestration of Food Crops in the Yangtze River Economic Belt of China," IJERPH, MDPI, vol. 19(20), pages 1-16, October.
    2. Karabulut, Halit & Yücesu, Hüseyin Serdar & ÇInar, Can & Aksoy, Fatih, 2009. "An experimental study on the development of a [beta]-type Stirling engine for low and moderate temperature heat sources," Applied Energy, Elsevier, vol. 86(1), pages 68-73, January.
    3. Xiaohua, Wang & Yunrong, Hu & Xiaqing, Dia & Yuedong, Zhoa, 2006. "Analysis and simulation on rural energy-economy system on Shouyang County in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(2), pages 139-151, April.
    4. Karatayev, Marat & Clarke, Michèle L., 2016. "A review of current energy systems and green energy potential in Kazakhstan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 491-504.
    5. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    6. Gorkemli Kazar & Arthur Kazar, 2014. "The Renewable Energy Production-Economic Development Nexus," International Journal of Energy Economics and Policy, Econjournals, vol. 4(2), pages 312-319.
    7. Mecibah, Mohamed Salah & Boukelia, Taqiy Eddine & Tahtah, Reda & Gairaa, Kacem, 2014. "Introducing the best model for estimation the monthly mean daily global solar radiation on a horizontal surface (Case study: Algeria)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 194-202.
    8. Zarzuelo, Carmen & López-Ruiz, Alejandro & Ortega-Sánchez, Miguel, 2018. "Impact of human interventions on tidal stream power: The case of Cádiz Bay," Energy, Elsevier, vol. 145(C), pages 88-104.
    9. B.F. Sihombing & Edy Lisdiyono, 2018. "Governance and the Role of Legal Aspects in the Fuel Pricing in Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 168-176.
    10. Baharoon, Dhyia Aidroos & Rahman, Hasimah Abdul & Fadhl, Saeed Obaid, 2016. "Publics׳ knowledge, attitudes and behavioral toward the use of solar energy in Yemen power sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 498-515.
    11. Bakirci, Kadir & Colak, Derya, 2012. "Effect of a superheating and sub-cooling heat exchanger to the performance of a ground source heat pump system," Energy, Elsevier, vol. 44(1), pages 996-1004.
    12. Kerme, Esa Dube & Orfi, Jamel & Fung, Alan S. & Salilih, Elias M. & Khan, Salah Ud-Din & Alshehri, Hassan & Ali, Emad & Alrasheed, Mohammed, 2020. "Energetic and exergetic performance analysis of a solar driven power, desalination and cooling poly-generation system," Energy, Elsevier, vol. 196(C).
    13. Mostafaeipour, Ali, 2010. "Productivity and development issues of global wind turbine industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1048-1058, April.
    14. Murshed, Muntasir, 2019. "Trade Liberalization Policies and Renewable Energy Transition in Low and Middle-Income Countries? An Instrumental Variable Approach," MPRA Paper 97075, University Library of Munich, Germany.
    15. Mohammadpour, Mohammadreza & Houshfar, Ehsan & Ashjaee, Mehdi & Mohammadpour, Amirreza, 2021. "Energy and exergy analysis of biogas fired regenerative gas turbine cycle with CO2 recirculation for oxy-fuel combustion power generation," Energy, Elsevier, vol. 220(C).
    16. Veronika Varvařovská & Michaela Staňková, 2021. "Does the Involvement of "Green Energy" Increase the Productivity of Companies in the Production of the Electricity Sector?," European Journal of Business Science and Technology, Mendel University in Brno, Faculty of Business and Economics, vol. 7(2), pages 152-164.
    17. Dincer, Ibrahim & Rosen, Marc A., 2005. "Thermodynamic aspects of renewables and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(2), pages 169-189, April.
    18. Sopian, Kamaruzzaman & Ali, Baharuddin & Asim, Nilofar, 2011. "Strategies for renewable energy applications in the organization of Islamic conference (OIC) countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4706-4725.
    19. Giwa, Adewale & Alabi, Adetunji & Yusuf, Ahmed & Olukan, Tuza, 2017. "A comprehensive review on biomass and solar energy for sustainable energy generation in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 620-641.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5293-:d:1191090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.