IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i10p3976-d1143161.html
   My bibliography  Save this article

BIM to BEM Transition for Optimizing Envelope Design Selection to Enhance Building Energy Efficiency and Cost-Effectiveness

Author

Listed:
  • Ngoc-Son Truong

    (Faculty of Civil Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam
    Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
    Faculty of Project Management, The University of Danang, University of Science and Technology (DUT), 54 Nguyen Luong Bang Street, District Lien Chieu, Da Nang City 550000, Vietnam)

  • Duc Long Luong

    (Faculty of Civil Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam
    Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam)

  • Quang Trung Nguyen

    (Faculty of Civil Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam
    Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
    Faculty of Project Management, The University of Danang, University of Science and Technology (DUT), 54 Nguyen Luong Bang Street, District Lien Chieu, Da Nang City 550000, Vietnam)

Abstract

This article focuses on developing an energy simulation model through Building Information Modeling (BIM) and Building Energy Modeling (BEM)to optimize energy in building design in Vietnam. Reducing the energy consumption in buildings will help reduce operating costs, impact the environment, and increase the efficiency of buildings. However, there is limited research on buildings with complex structures and configurations, detailed surface design, and envelope construction, especially in simulating details through BIM. The author proposes converting from BIM to BEM to simulate energy in buildings and optimize the factors related to building construction in the envelope design of the building. These factors include wall cladding materials, mirror materials, the window ratio on the walls, and other details. This study has effectively created an energy model for a public building, allowing for the calculation of the Energy Intensity Index (EUI) and annual energy costs for various scenarios. By altering factors associated with the design and construction process, the system has the potential to decrease both energy intensity and usage costs for the building. The study results will help designers and building managers improve and enhance energy efficiency in building projects.

Suggested Citation

  • Ngoc-Son Truong & Duc Long Luong & Quang Trung Nguyen, 2023. "BIM to BEM Transition for Optimizing Envelope Design Selection to Enhance Building Energy Efficiency and Cost-Effectiveness," Energies, MDPI, vol. 16(10), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:3976-:d:1143161
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/10/3976/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/10/3976/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shi, Xing & Tian, Zhichao & Chen, Wenqiang & Si, Binghui & Jin, Xing, 2016. "A review on building energy efficient design optimization rom the perspective of architects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 872-884.
    2. Bui, Dac-Khuong & Nguyen, Tuan Ngoc & Ghazlan, Abdallah & Ngo, Tuan Duc, 2021. "Biomimetic adaptive electrochromic windows for enhancing building energy efficiency," Applied Energy, Elsevier, vol. 300(C).
    3. Najjar, Mohammad & Figueiredo, Karoline & Hammad, Ahmed W.A. & Haddad, Assed, 2019. "Integrated optimization with building information modeling and life cycle assessment for generating energy efficient buildings," Applied Energy, Elsevier, vol. 250(C), pages 1366-1382.
    4. Žigart, Maja & Kovačič Lukman, Rebeka & Premrov, Miroslav & Žegarac Leskovar, Vesna, 2018. "Environmental impact assessment of building envelope components for low-rise buildings," Energy, Elsevier, vol. 163(C), pages 501-512.
    5. Arıcı, Müslüm & Bilgin, Feyza & Krajčík, Michal & Nižetić, Sandro & Karabay, Hasan, 2022. "Energy saving and CO2 reduction potential of external building walls containing two layers of phase change material," Energy, Elsevier, vol. 252(C).
    6. Chen, Xi & Yang, Hongxing, 2017. "A multi-stage optimization of passively designed high-rise residential buildings in multiple building operation scenarios," Applied Energy, Elsevier, vol. 206(C), pages 541-557.
    7. Kamel, Ehsan & Memari, Ali M., 2018. "Automated Building Energy Modeling and Assessment Tool (ABEMAT)," Energy, Elsevier, vol. 147(C), pages 15-24.
    8. Tsai, Men-Shen & Lin, Yu-Hsiu, 2012. "Modern development of an Adaptive Non-Intrusive Appliance Load Monitoring system in electricity energy conservation," Applied Energy, Elsevier, vol. 96(C), pages 55-73.
    9. Bui, Dac-Khuong & Nguyen, Tuan Ngoc & Ghazlan, Abdallah & Ngo, Ngoc-Tri & Ngo, Tuan Duc, 2020. "Enhancing building energy efficiency by adaptive façade: A computational optimization approach," Applied Energy, Elsevier, vol. 265(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "Impact of adjustment strategies on building design process in different climates oriented by multiple performance," Applied Energy, Elsevier, vol. 266(C).
    2. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost," Energy, Elsevier, vol. 192(C).
    3. Lešnik, Maja & Kravanja, Stojan & Premrov, Miroslav & Žegarac Leskovar, Vesna, 2020. "Optimal design of timber-glass upgrade modules for vertical building extension from the viewpoints of energy efficiency and visual comfort," Applied Energy, Elsevier, vol. 270(C).
    4. Abdo Abdullah Ahmed Gassar & Choongwan Koo & Tae Wan Kim & Seung Hyun Cha, 2021. "Performance Optimization Studies on Heating, Cooling and Lighting Energy Systems of Buildings during the Design Stage: A Review," Sustainability, MDPI, vol. 13(17), pages 1-47, September.
    5. Najjar, Mohammad & Figueiredo, Karoline & Hammad, Ahmed W.A. & Haddad, Assed, 2019. "Integrated optimization with building information modeling and life cycle assessment for generating energy efficient buildings," Applied Energy, Elsevier, vol. 250(C), pages 1366-1382.
    6. Hou, Dan & Huang, Jiayu & Wang, Yanyu, 2023. "A comparison of approaches with different constraint handling techniques for energy-efficient building form optimization," Energy, Elsevier, vol. 277(C).
    7. Benedek Kiss & Jose Dinis Silvestre & Rita Andrade Santos & Zsuzsa Szalay, 2021. "Environmental and Economic Optimisation of Buildings in Portugal and Hungary," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    8. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    9. Ali M. A. Faragalla & Somayeh Asadi, 2022. "Biomimetic Design for Adaptive Building Façades: A Paradigm Shift towards Environmentally Conscious Architecture," Energies, MDPI, vol. 15(15), pages 1-22, July.
    10. Jia, Kunqi & Guo, Ge & Xiao, Jucheng & Zhou, Huan & Wang, Zhihua & He, Guangyu, 2019. "Data compression approach for the home energy management system," Applied Energy, Elsevier, vol. 247(C), pages 643-656.
    11. Yang, Sungwoong & Cho, Hyun Mi & Yun, Beom Yeol & Hong, Taehoon & Kim, Sumin, 2021. "Energy usage and cost analysis of passive thermal retrofits for low-rise residential buildings in Seoul," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    12. Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
    13. Suzana Domjan & Sašo Medved & Boštjan Černe & Ciril Arkar, 2019. "Fast Modelling of nZEB Metrics of Office Buildings Built with Advanced Glass and BIPV Facade Structures," Energies, MDPI, vol. 12(16), pages 1-18, August.
    14. Bartosz Radomski & Tomasz Mróz, 2021. "The Methodology for Designing Residential Buildings with a Positive Energy Balance—Case Study," Energies, MDPI, vol. 14(16), pages 1-19, August.
    15. Zhao, Pengxiang & Dong, Zhao Yang & Meng, Ke & Kong, Weicong & Yang, Jiajia, 2021. "Household power usage pattern filtering-based residential electricity plan recommender system," Applied Energy, Elsevier, vol. 298(C).
    16. Jeewon Park & Oladayo S. Ajani & Rammohan Mallipeddi, 2023. "Optimization-Based Energy Disaggregation: A Constrained Multi-Objective Approach," Mathematics, MDPI, vol. 11(3), pages 1-13, January.
    17. Nayara R. M. Sakiyama & Joyce C. Carlo & Leonardo Mazzaferro & Harald Garrecht, 2021. "Building Optimization through a Parametric Design Platform: Using Sensitivity Analysis to Improve a Radial-Based Algorithm Performance," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    18. Likai Wang & Patrick Janssen & Kian Wee Chen & Ziyu Tong & Guohua Ji, 2019. "Subtractive Building Massing for Performance-Based Architectural Design Exploration: A Case Study of Daylighting Optimization," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    19. Bartosz Radomski & Tomasz Mróz, 2021. "The Methodology for Designing Residential Buildings with a Positive Energy Balance—General Approach," Energies, MDPI, vol. 14(15), pages 1-16, August.
    20. Liu, Bo & Luan, Wenpeng & Yu, Yixin, 2017. "Dynamic time warping based non-intrusive load transient identification," Applied Energy, Elsevier, vol. 195(C), pages 634-645.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:3976-:d:1143161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.