IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3198-d803503.html
   My bibliography  Save this article

Fault Diagnosis of Tennessee Eastman Process with XGB-AVSSA-KELM Algorithm

Author

Listed:
  • Mingfei Hu

    (Qianhu College, Nanchang University, Nanchang 330031, China)

  • Xinyi Hu

    (Qianhu College, Nanchang University, Nanchang 330031, China)

  • Zhenzhou Deng

    (Information Engineering College, Nanchang University, Nanchang 330031, China)

  • Bing Tu

    (Chongqing Research Institute, Nanchang University, Chongqing 402660, China)

Abstract

In fault detection and the diagnosis of large industrial systems, whose chemical processes usually exhibit complex, high-dimensional, time-varying and non-Gaussian characteristics, the classification accuracy of traditional methods is low. In this paper, a kernel limit learning machine (KELM) based on an adaptive variation sparrow search algorithm (AVSSA) is proposed. Firstly, the dataset is optimized by removing redundant features using the eXtreme Gradient Boosting (XGBOOST) model. Secondly, a new optimization algorithm, AVSSA, is proposed to automatically adjust the network hyperparameters of KELM to improve the performance of the fault classifier. Finally, the optimized feature sequences are fed into the proposed classifier to obtain the final diagnosis results. The Tennessee Eastman (TE) chemical process is used to verify the effectiveness of the proposed method through multidimensional diagnostic metrics. The results show that our proposed diagnosis method can significantly improve the accuracy of TE process fault diagnosis compared with traditional optimization algorithms. The average diagnosis rate for 21 faults was 91.00%.

Suggested Citation

  • Mingfei Hu & Xinyi Hu & Zhenzhou Deng & Bing Tu, 2022. "Fault Diagnosis of Tennessee Eastman Process with XGB-AVSSA-KELM Algorithm," Energies, MDPI, vol. 15(9), pages 1-25, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3198-:d:803503
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3198/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3198/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Chao & Reniers, Genserik & Khakzad, Nima, 2021. "A dynamic multi-agent approach for modeling the evolution of multi-hazard accident scenarios in chemical plants," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    2. Chen, Chao & Khakzad, Nima & Reniers, Genserik, 2020. "Dynamic vulnerability assessment of process plants with respect to vapor cloud explosions," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    3. Yang, Zhang & Ce, Li & Lian, Li, 2017. "Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods," Applied Energy, Elsevier, vol. 190(C), pages 291-305.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anping Wan & Qing Chang & Yinlong Zhang & Chao Wei & Reuben Seyram Komla Agbozo & Xiaoliang Zhao, 2022. "Optimal Load Distribution of CHP Based on Combined Deep Learning and Genetic Algorithm," Energies, MDPI, vol. 15(20), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gholamizadeh, Kamran & Zarei, Esmaeil & Yazdi, Mohammad & Ramezanifar, Ehsan & Aliabadi, Mostafa Mirzaei, 2024. "A hybrid model for dynamic analysis of domino effects in chemical process industries," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Li, Xiaofeng & Chen, Guohua & Amyotte, Paul & Khan, Faisal & Alauddin, Mohammad, 2023. "Vulnerability assessment of storage tanks exposed to simultaneous fire and explosion hazards," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Afanasyev, Dmitriy O. & Fedorova, Elena A., 2019. "On the impact of outlier filtering on the electricity price forecasting accuracy," Applied Energy, Elsevier, vol. 236(C), pages 196-210.
    4. Marcjasz, Grzegorz & Uniejewski, Bartosz & Weron, Rafał, 2019. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting with NARX neural networks," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1520-1532.
    5. Chen, Chao & Yang, Ming & Reniers, Genserik, 2021. "A dynamic stochastic methodology for quantifying HAZMAT storage resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Vasallo, Manuel Jesús & Cojocaru, Emilian Gelu & Gegúndez, Manuel Emilio & Marín, Diego, 2021. "Application of data-based solar field models to optimal generation scheduling in concentrating solar power plants," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1130-1149.
    7. Faheem Jan & Ismail Shah & Sajid Ali, 2022. "Short-Term Electricity Prices Forecasting Using Functional Time Series Analysis," Energies, MDPI, vol. 15(9), pages 1-15, May.
    8. Díaz, Guzmán & Coto, José & Gómez-Aleixandre, Javier, 2019. "Prediction and explanation of the formation of the Spanish day-ahead electricity price through machine learning regression," Applied Energy, Elsevier, vol. 239(C), pages 610-625.
    9. Micha{l} Narajewski & Florian Ziel, 2020. "Ensemble Forecasting for Intraday Electricity Prices: Simulating Trajectories," Papers 2005.01365, arXiv.org, revised Aug 2020.
    10. Cocco Mariani, Viviana & Hennings Och, Stephan & dos Santos Coelho, Leandro & Domingues, Eric, 2019. "Pressure prediction of a spark ignition single cylinder engine using optimized extreme learning machine models," Applied Energy, Elsevier, vol. 249(C), pages 204-221.
    11. Nazila Pourhaji & Mohammad Asadpour & Ali Ahmadian & Ali Elkamel, 2022. "The Investigation of Monthly/Seasonal Data Clustering Impact on Short-Term Electricity Price Forecasting Accuracy: Ontario Province Case Study," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    12. Men, Jinkun & Chen, Guohua & Yang, Yunfeng & Reniers, Genserik, 2022. "An event-driven probabilistic methodology for modeling the spatial-temporal evolution of natural hazard-induced domino chain in chemical industrial parks," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    13. Lu, Xin & Qiu, Jing & Lei, Gang & Zhu, Jianguo, 2022. "Scenarios modelling for forecasting day-ahead electricity prices: Case studies in Australia," Applied Energy, Elsevier, vol. 308(C).
    14. Jacob Hale & Suzanna Long, 2020. "A Time Series Sustainability Assessment of a Partial Energy Portfolio Transition," Energies, MDPI, vol. 14(1), pages 1-14, December.
    15. He, Kaijian & Tso, Geoffrey K.F. & Zou, Yingchao & Liu, Jia, 2018. "Crude oil risk forecasting: New evidence from multiscale analysis approach," Energy Economics, Elsevier, vol. 76(C), pages 574-583.
    16. Bhatia, Kushagra & Mittal, Rajat & Varanasi, Jyothi & Tripathi, M.M., 2021. "An ensemble approach for electricity price forecasting in markets with renewable energy resources," Utilities Policy, Elsevier, vol. 70(C).
    17. Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
    18. Kavita Jain & Muhammed Basheer Jasser & Muzaffar Hamzah & Akash Saxena & Ali Wagdy Mohamed, 2022. "Harris Hawk Optimization-Based Deep Neural Networks Architecture for Optimal Bidding in the Electricity Market," Mathematics, MDPI, vol. 10(12), pages 1-19, June.
    19. Blázquez, Cristina Sáez & Borge-Diez, David & Nieto, Ignacio Martín & Martín, Arturo Farfán & González-Aguilera, Diego, 2021. "Multi-parametric evaluation of electrical, biogas and natural gas geothermal source heat pumps," Renewable Energy, Elsevier, vol. 163(C), pages 1682-1691.
    20. Yang, Haolin & Schell, Kristen R., 2022. "GHTnet: Tri-Branch deep learning network for real-time electricity price forecasting," Energy, Elsevier, vol. 238(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3198-:d:803503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.