IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3108-d801066.html
   My bibliography  Save this article

Heat Transfer Enhancement Using Micro Porous Structured Surfaces

Author

Listed:
  • Kai Zhang

    (School of Aeronautics Science and Engineering, Beihang University, Beijing 100191, China)

  • Haichuan Jin

    (School of Aeronautics Science and Engineering, Beihang University, Beijing 100191, China)

Abstract

The parabolic trough solar collector as a popular technique is widely used in solar concentrating technologies (SCTs). The solar absorber tube is the key position of the trough solar thermal power system. The internal modification of the absorber tube is one of the most interesting techniques for increasing the collector’s performance. At present, most of the methods to enhance heat transfer efficiency focus on designing alternative parabolic trough collectors (PTC) absorbers and improving the internal structure of absorption tubes. Due to the limitation of temperature range, most absorption tubes use oil as heat absorbing liquid, and very few heat absorbing tubes directly use water as working fluid. This is because water is limited by critical heat flux in high temperature environment, resulting in low heat transfer performance. In this work, we designed a new porous absorber tube with the function of allowing liquid resupply and vapor overflow from different paths, which can effectively improve the critical heat flux of the absorber tube when using distilled water as working fluid. In order to obtain better heat transfer performance of the absorber and verify the feasibility of vapor–liquid separation mechanism, a simplified model of the absorber was carried out in pool boiling. In this work, we fabricated an arterial porous structure with the function of regulating vapor–liquid flow path based on vacuum sintering technique, and the effect of different heating methods on boiling heat transfer performance are analyzed. The maximum heat flux of 450 W/cm 2 was achieved without any dry-out at the superheat of 42 °C, and the unique evaporation/boiling curve was obtained.

Suggested Citation

  • Kai Zhang & Haichuan Jin, 2022. "Heat Transfer Enhancement Using Micro Porous Structured Surfaces," Energies, MDPI, vol. 15(9), pages 1-14, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3108-:d:801066
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3108/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3108/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Yinfeng & Lu, Beibei & Chen, Haijun & Fan, Hongtu & Taylor, Robert A. & Zhu, Yuezhao, 2017. "Experimental investigation of the thermal performance of a horizontal two-phase loop thermosiphon suitable for solar parabolic trough receivers operating at 200–400 °C," Energy, Elsevier, vol. 132(C), pages 289-304.
    2. Bortolato, Matteo & Dugaria, Simone & Del Col, Davide, 2016. "Experimental study of a parabolic trough solar collector with flat bar-and-plate absorber during direct steam generation," Energy, Elsevier, vol. 116(P1), pages 1039-1050.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco José Sepúlveda & María Teresa Miranda & Irene Montero & José Ignacio Arranz & Francisco Javier Lozano & Manuel Matamoros & Paloma Rodríguez, 2019. "Analysis of Potential Use of Linear Fresnel Collector for Direct Steam Generation in Industries of the Southwest of Europe," Energies, MDPI, vol. 12(21), pages 1-15, October.
    2. Amit K. Bhakta & Nitesh K. Panday & Shailendra N. Singh, 2018. "Performance Study of a Cylindrical Parabolic Concentrating Solar Water Heater with Nail Type Twisted Tape Inserts in the Copper Absorber Tube," Energies, MDPI, vol. 11(1), pages 1-15, January.
    3. Chen, Kailun & Meng, Zhaoming & Yan, Changqi & Fan, Guangming & Ding, Tao, 2018. "Experimental study on start-up and steady state characteristics of passive residual heat removal system for 2 MW molten salt reactor," Energy, Elsevier, vol. 147(C), pages 826-838.
    4. Ma, Xinglong & Zheng, Hongfei & Liu, Shuli, 2019. "Optimization on a cylindrical Fresnel lens and its validation in a medium-temperature solar steam generation system," Renewable Energy, Elsevier, vol. 134(C), pages 1332-1343.
    5. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    6. Cao, Jingyu & Zheng, Zhanying & Asim, Muhammad & Hu, Mingke & Wang, Qiliang & Su, Yuehong & Pei, Gang & Leung, Michael K.H., 2020. "A review on independent and integrated/coupled two-phase loop thermosyphons," Applied Energy, Elsevier, vol. 280(C).
    7. Gong, Jing-hu & Wang, Jun & Lund, Peter D. & Zhao, Dan-dan & Hu, En-yi & Jin, Wei, 2020. "Improving the performance of large-aperture parabolic trough solar concentrator using semi-circular absorber tube with external fin and flat-plate radiation shield," Renewable Energy, Elsevier, vol. 159(C), pages 1215-1223.
    8. Dugaria, Simone & Bortolato, Matteo & Del Col, Davide, 2018. "Modelling of a direct absorption solar receiver using carbon based nanofluids under concentrated solar radiation," Renewable Energy, Elsevier, vol. 128(PB), pages 495-508.
    9. Holler, Stefan & Winkelmann, Adrian & Pelda, Johannes & Salaymeh, Abdulraheem, 2021. "Feasibility study on solar thermal process heat in the beverage industry," Energy, Elsevier, vol. 233(C).
    10. Tian, Zhiyong & Perers, Bengt & Furbo, Simon & Fan, Jianhua, 2017. "Annual measured and simulated thermal performance analysis of a hybrid solar district heating plant with flat plate collectors and parabolic trough collectors in series," Applied Energy, Elsevier, vol. 205(C), pages 417-427.
    11. Sharma, Ashish K. & Sharma, Chandan & Mullick, Subhash C. & Kandpal, Tara C., 2017. "Solar industrial process heating: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 124-137.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3108-:d:801066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.