IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3098-d800856.html
   My bibliography  Save this article

Numerical Study on the Aerodynamics of the Evacuated Tube Transportation System from Subsonic to Supersonic

Author

Listed:
  • Zhiwei Zhou

    (School of Automotive Studies, Tongji University, Shanghai 201804, China
    Shanghai Automotive Wind Tunnel Center, Tongji University, Shanghai 201804, China)

  • Chao Xia

    (School of Automotive Studies, Tongji University, Shanghai 201804, China
    Shanghai Automotive Wind Tunnel Center, Tongji University, Shanghai 201804, China)

  • Xizhuang Shan

    (School of Automotive Studies, Tongji University, Shanghai 201804, China
    Shanghai Automotive Wind Tunnel Center, Tongji University, Shanghai 201804, China)

  • Zhigang Yang

    (School of Automotive Studies, Tongji University, Shanghai 201804, China
    Shanghai Automotive Wind Tunnel Center, Tongji University, Shanghai 201804, China
    Beijing Aeronautical Science and Technology Research Institute, Beijing 102211, China)

Abstract

In this study, the aerodynamic characteristics of the three-dimensional evacuated tube transportation (ETT) system based on the Reynolds-averaged Navier–Stokes κ−ω shear-stress transport turbulent model were investigated. The effects of two key parameters on the drag and flow topology of the ETT system, namely the travelling speed and ambient pressure in the tube, were studied. Compared with trains in the atmospheric environment without the tube (i.e., the open system), the ETT system shows considerable drag reduction with suitable operating parameters in the tube, particularly at a higher travelling speed range. The drag varying with the speed from subsonic to supersonic, shows various change trends at different speeds because of their distinct flow structures. The higher pressure in front of train head was observed to be reduced by choking, and a low pressure in the wake by expansion waves led to rapid increase in the drag and drag coefficient. The relationship between the drag and operating pressure was observed to be approximately linear for both the subsonic and supersonic speeds.

Suggested Citation

  • Zhiwei Zhou & Chao Xia & Xizhuang Shan & Zhigang Yang, 2022. "Numerical Study on the Aerodynamics of the Evacuated Tube Transportation System from Subsonic to Supersonic," Energies, MDPI, vol. 15(9), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3098-:d:800856
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3098/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3098/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aditya Bose & Vimal K. Viswanathan, 2021. "Mitigating the Piston Effect in High-Speed Hyperloop Transportation: A Study on the Use of Aerofoils," Energies, MDPI, vol. 14(2), pages 1-18, January.
    2. Thi Thanh Giang Le & Kyeong Sik Jang & Kwan-Sup Lee & Jaiyoung Ryu, 2020. "Numerical Investigation of Aerodynamic Drag and Pressure Waves in Hyperloop Systems," Mathematics, MDPI, vol. 8(11), pages 1-23, November.
    3. Jae-Sung Oh & Taehak Kang & Seokgyun Ham & Kwan-Sup Lee & Yong-Jun Jang & Hong-Sun Ryou & Jaiyoung Ryu, 2019. "Numerical Analysis of Aerodynamic Characteristics of Hyperloop System," Energies, MDPI, vol. 12(3), pages 1-17, February.
    4. Janusz Piechna, 2021. "Low Pressure Tube Transport—An Alternative to Ground Road Transport—Aerodynamic and Other Problems and Possible Solutions," Energies, MDPI, vol. 14(13), pages 1-33, June.
    5. Voltes-Dorta, Augusto & Becker, Eliad, 2018. "The potential short-term impact of a Hyperloop service between San Francisco and Los Angeles on airport competition in California," Transport Policy, Elsevier, vol. 71(C), pages 45-56.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed Abdulla & Khalid A. Juhany, 2022. "A Rapid Solver for the Prediction of Flow-Field of High-Speed Vehicle Moving in a Tube," Energies, MDPI, vol. 15(16), pages 1-15, August.
    2. Lambros Mitropoulos & Annie Kortsari & Alexandros Koliatos & Georgia Ayfantopoulou, 2021. "The Hyperloop System and Stakeholders: A Review and Future Directions," Sustainability, MDPI, vol. 13(15), pages 1-28, July.
    3. Olena Stryhunivska & Katarzyna Gdowska & Rafał Rumin, 2020. "A Concept of Integration of a Vactrain Underground Station with the Solidarity Transport Hub Poland," Energies, MDPI, vol. 13(21), pages 1-23, November.
    4. Jerzy Kisilowski & Rafał Kowalik, 2020. "Displacements of the Levitation Systems in the Vehicle Hyperloop," Energies, MDPI, vol. 13(24), pages 1-25, December.
    5. He, Deqiang & Teng, Xiaoliang & Chen, Yanjun & Liu, Bin & Wang, Heliang & Li, Xianwang & Ma, Rui, 2022. "Energy saving in metro ventilation system based on multi-factor analysis and air characteristics of piston vent," Applied Energy, Elsevier, vol. 307(C).
    6. Qigang Zhu & Yifan Liu & Ming Liu & Shuaishuai Zhang & Guangyang Chen & Hao Meng, 2021. "Intelligent Planning and Research on Urban Traffic Congestion," Future Internet, MDPI, vol. 13(11), pages 1-17, November.
    7. Konstantinos Gkoumas & Michalis Christou, 2020. "A Triple-Helix Approach for the Assessment of Hyperloop Potential in Europe," Sustainability, MDPI, vol. 12(19), pages 1-20, September.
    8. Donggun Son & Jungil Lee, 2023. "A Periodically Rotating Distributed Forcing of Flow over a Sphere for Drag Reduction," Mathematics, MDPI, vol. 11(3), pages 1-16, January.
    9. Jinho Lee & Wonhee You & Jungyoul Lim & Kwan-Sup Lee & Jae-Yong Lim, 2021. "Development of the Reduced-Scale Vehicle Model for the Dynamic Characteristic Analysis of the Hyperloop," Energies, MDPI, vol. 14(13), pages 1-13, June.
    10. Grosche, Tobias & Klophaus, Richard & Seredyński, Adam, 2020. "Market concentration in German air transport before and after the Air Berlin bankruptcy," Transport Policy, Elsevier, vol. 94(C), pages 78-88.
    11. Seung Il Baek & Jaiyoung Ryu & Joon Ahn, 2021. "Large Eddy Simulation of Film Cooling with Forward Expansion Hole: Comparative Study with LES and RANS Simulations," Energies, MDPI, vol. 14(8), pages 1-19, April.
    12. Aditya Bose & Vimal K. Viswanathan, 2021. "Mitigating the Piston Effect in High-Speed Hyperloop Transportation: A Study on the Use of Aerofoils," Energies, MDPI, vol. 14(2), pages 1-18, January.
    13. Thanh Dam Mai & Jaiyoung Ryu, 2021. "Effects of Damaged Rotor Blades on the Aerodynamic Behavior and Heat-Transfer Characteristics of High-Pressure Gas Turbines," Mathematics, MDPI, vol. 9(6), pages 1-21, March.
    14. Xiaoming Zhou & Fang Fang & Yadong Li, 2022. "Numerical Method for System Level Simulation of Long-Distance Pneumatic Conveying Pipelines," Mathematics, MDPI, vol. 10(21), pages 1-16, November.
    15. Thi Thanh Giang Le & Kyeong Sik Jang & Kwan-Sup Lee & Jaiyoung Ryu, 2020. "Numerical Investigation of Aerodynamic Drag and Pressure Waves in Hyperloop Systems," Mathematics, MDPI, vol. 8(11), pages 1-23, November.
    16. Jungyoul Lim & Chang-Young Lee & Jin-Ho Lee & Wonhee You & Kwan-Sup Lee & Suyong Choi, 2020. "Design Model of Null-Flux Coil Electrodynamic Suspension for the Hyperloop," Energies, MDPI, vol. 13(19), pages 1-21, September.
    17. Eric Chaidez & Shankar P. Bhattacharyya & Adonios N. Karpetis, 2019. "Levitation Methods for Use in the Hyperloop High-Speed Transportation System," Energies, MDPI, vol. 12(21), pages 1-18, November.
    18. Sui, Yang & Niu, Jiqiang & Yu, Qiujun & Yuan, Yanping & Cao, Xiaoling & Yang, Xiaofeng, 2021. "Numerical analysis of the aerothermodynamic behavior of a Hyperloop in choked flow," Energy, Elsevier, vol. 237(C).
    19. Janusz Piechna, 2021. "Low Pressure Tube Transport—An Alternative to Ground Road Transport—Aerodynamic and Other Problems and Possible Solutions," Energies, MDPI, vol. 14(13), pages 1-33, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3098-:d:800856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.