IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i5p1787-d760765.html
   My bibliography  Save this article

Damping of Subsynchronous Resonance in Utility DFIG-Based Wind Farms Using Wide-Area Fuzzy Control Approach

Author

Listed:
  • Yaser Bostani

    (Department of Electrical Engineering, University of Zanjan, Zanjan 45371-38791, Iran
    Design and Development Part, Guilan Regional Electric Company, Rasht 41377-18775, Iran)

  • Saeid Jalilzadeh

    (Department of Electrical Engineering, University of Zanjan, Zanjan 45371-38791, Iran)

  • Saleh Mobayen

    (Department of Electrical Engineering, University of Zanjan, Zanjan 45371-38791, Iran
    Future Technology Research Center, National Yunlin University of Science and Technology, Douliou 64002, Taiwan)

  • Thaned Rojsiraphisal

    (Advanced Research Center for Computational Simulation, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
    Data Science Research Center, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand)

  • Andrzej Bartoszewicz

    (Institute of Automatic Control, Lodz University of Technology, 18 Stefanowskiego St., 90-537 Lodz, Poland)

Abstract

This paper presents a novel fuzzy control scheme for damping the subsynchronous resonance (SSR) according to the wide-area measurement system (WAMS) in power systems including doubly fed induction generator (DFIG)-based wind farms connected to series capacitive compensated transmission networks. The SSR damping is attained by adding the fuzzy controller as a supplementary signal at the stator voltage loop of the grid-side converter (GSC) of DFIG wind farms. Additionally, time delays due to communication signals are important when using WAMSs. If the time delays are ignored, it causes system instability. In this paper, the time delays are modeled with a separate fuzzy input to the controller. The new fuzzy control approach is executed by using the angular velocity of synchronous generators (w) and its variation in the angular velocity (dw/dt). The effectiveness and success of the WAMS-based fuzzy controller is demonstrated by comparison with the particle swarm optimization (PSO) and imperialist competitive algorithm (ICA) optimization methods. The efficacy and validity of the planned auxiliary damping control are verified on a modified version of the IEEE second benchmark model including DFIG-based wind farms via time simulations using the MATLAB/Simulink toolbox.

Suggested Citation

  • Yaser Bostani & Saeid Jalilzadeh & Saleh Mobayen & Thaned Rojsiraphisal & Andrzej Bartoszewicz, 2022. "Damping of Subsynchronous Resonance in Utility DFIG-Based Wind Farms Using Wide-Area Fuzzy Control Approach," Energies, MDPI, vol. 15(5), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1787-:d:760765
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/5/1787/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/5/1787/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Faris Alatar & Ali Mehrizi-Sani, 2021. "Frequency Scan–Based Mitigation Approach of Subsynchronous Control Interaction in Type-3 Wind Turbines," Energies, MDPI, vol. 14(15), pages 1-13, July.
    2. Zhang, Jingjing & Li, Huanhuan & Chen, Diyi & Xu, Beibei & Mahmud, Md Apel, 2021. "Flexibility assessment of a hybrid power system: Hydroelectric units in balancing the injection of wind power," Renewable Energy, Elsevier, vol. 171(C), pages 1313-1326.
    3. Zakiud Din & Jianzhong Zhang & Hussain Bassi & Muhyaddin Rawa & Yipeng Song, 2020. "Impact of Phase Locked Loop with Different Types and Control Dynamics on Resonance of DFIG System," Energies, MDPI, vol. 13(5), pages 1-26, February.
    4. Xiangwu Yan & Wenfei Chang & Sen Cui & Aazim Rasool & Jiaoxin Jia & Ying Sun, 2021. "Recurrence of Sub-Synchronous Oscillation Accident of Hornsea Wind Farm in UK and Its Suppression Strategy," Energies, MDPI, vol. 14(22), pages 1-13, November.
    5. Vinay Sewdien & Xiongfei Wang & Jose Rueda Torres & Mart van der Meijden, 2020. "Critical Review of Mitigation Solutions for SSO in Modern Transmission Grids," Energies, MDPI, vol. 13(13), pages 1-20, July.
    6. Gangui Yan & Dan Wang & Qi Jia & Wenbo Hu, 2020. "Equivalent Modeling of Dfig-Based Wind Farms for Sub-Synchronous Resonance Analysis," Energies, MDPI, vol. 13(20), pages 1-19, October.
    7. Yingzong Jiao & Feng Li & Hui Dai & Heng Nian, 2020. "Analysis and Mitigation of Sub-Synchronous Resonance for Doubly Fed Induction Generator under VSG Control," Energies, MDPI, vol. 13(7), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiuzhen Wang & Jiangping Hu, 2023. "Modeling and Control of Wide-Area Networks," Mathematics, MDPI, vol. 11(18), pages 1-24, September.
    2. Mohamed Abd-El-Hakeem Mohamed & Hossam Seddik Abbas & Mokhtar Shouran & Salah Kamel, 2022. "A Neuro-Predictive Controller Scheme for Integration of a Basic Wind Energy Generation Unit with an Electrical Power System," Energies, MDPI, vol. 15(16), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangwu Yan & Wenfei Chang & Sen Cui & Aazim Rasool & Jiaoxin Jia & Ying Sun, 2021. "Recurrence of Sub-Synchronous Oscillation Accident of Hornsea Wind Farm in UK and Its Suppression Strategy," Energies, MDPI, vol. 14(22), pages 1-13, November.
    2. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Li, Gang & Liu, Lingjun, 2022. "Impacts of different wind and solar power penetrations on cascade hydroplants operation," Renewable Energy, Elsevier, vol. 182(C), pages 227-244.
    3. Lorenzo Bongini & Rosa Anna Mastromauro & Daniele Sgrò & Fabrizio Malvaldi, 2020. "Electrical Damping Assessment and Sensitivity Analysis of a Liquefied Natural Gas Plant: Experimental Validation," Energies, MDPI, vol. 13(16), pages 1-27, August.
    4. Vinay Sewdien & Jose Luis Rueda Torres & Mart van der Meijden, 2020. "Evaluation of Phase Imbalance Compensation for Mitigating DFIG-Series Capacitor Interaction," Energies, MDPI, vol. 13(17), pages 1-17, September.
    5. Hyeokjin Noh & Hwanhee Cho & Sungyun Choi & Byongjun Lee, 2022. "Mitigating Subsynchronous Torsional Interaction Using Geometric Feature Extraction Method," Sustainability, MDPI, vol. 14(23), pages 1-16, December.
    6. Panos C. Papageorgiou & Konstantinos F. Krommydas & Antonio T. Alexandridis, 2020. "Validation of Novel PLL-driven PI Control Schemes on Supporting VSIs in Weak AC-Connections," Energies, MDPI, vol. 13(6), pages 1-21, March.
    7. Lasantha Meegahapola & Siqi Bu, 2021. "Special Issue: “Wind Power Integration into Power Systems: Stability and Control Aspects”," Energies, MDPI, vol. 14(12), pages 1-4, June.
    8. Chaoyang Chen & Hualing Liu & Yong Xiao & Fagen Zhu & Li Ding & Fuwen Yang, 2022. "Power Generation Scheduling for a Hydro-Wind-Solar Hybrid System: A Systematic Survey and Prospect," Energies, MDPI, vol. 15(22), pages 1-31, November.
    9. Han, Shuo & He, Mengjiao & Zhao, Ziwen & Chen, Diyi & Xu, Beibei & Jurasz, Jakub & Liu, Fusheng & Zheng, Hongxi, 2023. "Overcoming the uncertainty and volatility of wind power: Day-ahead scheduling of hydro-wind hybrid power generation system by coordinating power regulation and frequency response flexibility," Applied Energy, Elsevier, vol. 333(C).
    10. Ronglin Ma & Yaozhen Han & Weigang Pan, 2021. "Variable-Gain Super-Twisting Sliding Mode Damping Control of Series-Compensated DFIG-Based Wind Power System for SSCI Mitigation," Energies, MDPI, vol. 14(2), pages 1-20, January.
    11. Yaser Bostani & Saeid Jalilzadeh & Saleh Mobayen & Afef Fekih & Wudhichai Assawinchaichote, 2022. "A Wide-Area Fuzzy Control Design with Latency Compensation to Mitigate Sub-Synchronous Resonance in DFIG-Based Wind Farms," Energies, MDPI, vol. 15(4), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1787-:d:760765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.