IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7685-d680944.html
   My bibliography  Save this article

Recurrence of Sub-Synchronous Oscillation Accident of Hornsea Wind Farm in UK and Its Suppression Strategy

Author

Listed:
  • Xiangwu Yan

    (Key Laboratory of Distributed Energy Storage and Micro-Grid of Hebei Province, North China Electric Power University, No. 619 Yonghua Road, Baoding 071000, China)

  • Wenfei Chang

    (Key Laboratory of Distributed Energy Storage and Micro-Grid of Hebei Province, North China Electric Power University, No. 619 Yonghua Road, Baoding 071000, China)

  • Sen Cui

    (Key Laboratory of Distributed Energy Storage and Micro-Grid of Hebei Province, North China Electric Power University, No. 619 Yonghua Road, Baoding 071000, China)

  • Aazim Rasool

    (Research and Development Department, TEMSTEC (Pvt) Ltd., Wah Cantt 47040, Pakistan)

  • Jiaoxin Jia

    (Key Laboratory of Distributed Energy Storage and Micro-Grid of Hebei Province, North China Electric Power University, No. 619 Yonghua Road, Baoding 071000, China)

  • Ying Sun

    (Key Laboratory of Distributed Energy Storage and Micro-Grid of Hebei Province, North China Electric Power University, No. 619 Yonghua Road, Baoding 071000, China)

Abstract

A large-scale power system breakdown in the United Kingdom caused blackouts in several important cities, losing about 3.2 percent of the load and affecting nearly 1 million power users on 9 August 2019. On the basis of the accident investigation report provided by the UK National Grid, the specific reasons for the sub-synchronous oscillation of Hornsea wind farm were analyzed. The Hornsea wind power system model was established by MATLAB simulation software to reproduce the accident. To solve this problem, based on the positive and negative sequence decomposition, the control strategy of grid-side converter of doubly-fed induction generator is improved to control the positive sequence voltage of the generator terminal, which can quickly recover the voltage by compensating the reactive power at the grid side. Consequently, the influence of the fault is weakened on the Hornsea wind farm system, and the sub-synchronous oscillation of the system is suppressed. The simulation results verify the effectiveness of the proposed control strategy in suppressing the sub-synchronous oscillation of weak AC wind power system after being applied to doubly-fed induction generator, which serves as a reference for studying similar problems of offshore wind power.

Suggested Citation

  • Xiangwu Yan & Wenfei Chang & Sen Cui & Aazim Rasool & Jiaoxin Jia & Ying Sun, 2021. "Recurrence of Sub-Synchronous Oscillation Accident of Hornsea Wind Farm in UK and Its Suppression Strategy," Energies, MDPI, vol. 14(22), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7685-:d:680944
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7685/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7685/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heng Nian & Xiao Jin, 2021. "Modeling and Analysis of Transient Reactive Power Characteristics of DFIG Considering Crowbar Circuit under Ultra HVDC Commutation Failure," Energies, MDPI, vol. 14(10), pages 1-17, May.
    2. Chong Zhang & Daozhuo Jiang & Xuan Zhang & Yiqiao Liang, 2019. "Research on an Asymmetric Fault Control Strategy for an AC/AC System Based on a Modular Multilevel Matrix Converter," Energies, MDPI, vol. 12(16), pages 1-21, August.
    3. Dong-Kyun Son & Soon-Ho Kwon & Dong-Ok Kim & Hee-Sue Song & Geun-Ho Lee, 2021. "Control Comparison for the Coordinate Transformation of an Asymmetric Dual Three Phase Synchronous Motor in Healthy and Single-Phase Open Fault States," Energies, MDPI, vol. 14(6), pages 1-14, March.
    4. Zakiud Din & Jianzhong Zhang & Hussain Bassi & Muhyaddin Rawa & Yipeng Song, 2020. "Impact of Phase Locked Loop with Different Types and Control Dynamics on Resonance of DFIG System," Energies, MDPI, vol. 13(5), pages 1-26, February.
    5. Yingzong Jiao & Feng Li & Hui Dai & Heng Nian, 2020. "Analysis and Mitigation of Sub-Synchronous Resonance for Doubly Fed Induction Generator under VSG Control," Energies, MDPI, vol. 13(7), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaser Bostani & Saeid Jalilzadeh & Saleh Mobayen & Thaned Rojsiraphisal & Andrzej Bartoszewicz, 2022. "Damping of Subsynchronous Resonance in Utility DFIG-Based Wind Farms Using Wide-Area Fuzzy Control Approach," Energies, MDPI, vol. 15(5), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaser Bostani & Saeid Jalilzadeh & Saleh Mobayen & Thaned Rojsiraphisal & Andrzej Bartoszewicz, 2022. "Damping of Subsynchronous Resonance in Utility DFIG-Based Wind Farms Using Wide-Area Fuzzy Control Approach," Energies, MDPI, vol. 15(5), pages 1-15, February.
    2. Andrzej Chudzikiewicz & Igor Maciejewski & Tomasz Krzyżyński & Andrzej Krzyszkowski & Anna Stelmach, 2022. "Electric Drive Solution for Low-Floor City Transport Trams," Energies, MDPI, vol. 15(13), pages 1-18, June.
    3. Panos C. Papageorgiou & Konstantinos F. Krommydas & Antonio T. Alexandridis, 2020. "Validation of Novel PLL-driven PI Control Schemes on Supporting VSIs in Weak AC-Connections," Energies, MDPI, vol. 13(6), pages 1-21, March.
    4. Lasantha Meegahapola & Siqi Bu, 2021. "Special Issue: “Wind Power Integration into Power Systems: Stability and Control Aspects”," Energies, MDPI, vol. 14(12), pages 1-4, June.
    5. Ronglin Ma & Yaozhen Han & Weigang Pan, 2021. "Variable-Gain Super-Twisting Sliding Mode Damping Control of Series-Compensated DFIG-Based Wind Power System for SSCI Mitigation," Energies, MDPI, vol. 14(2), pages 1-20, January.
    6. Yaser Bostani & Saeid Jalilzadeh & Saleh Mobayen & Afef Fekih & Wudhichai Assawinchaichote, 2022. "A Wide-Area Fuzzy Control Design with Latency Compensation to Mitigate Sub-Synchronous Resonance in DFIG-Based Wind Farms," Energies, MDPI, vol. 15(4), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7685-:d:680944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.