IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4640-d847297.html
   My bibliography  Save this article

Electric Drive Solution for Low-Floor City Transport Trams

Author

Listed:
  • Andrzej Chudzikiewicz

    (Electrical Engineering and Computer Science, Faculty of Transport, Kazimierz Pulaski University of Technology and Humanities in Radom, Malczewskiego Street 29, 26-600 Radom, Poland)

  • Igor Maciejewski

    (Faculty of Mechanical Engineering, Koszalin University of Technology, Racławicka Street 15-17, 75-620 Koszalin, Poland)

  • Tomasz Krzyżyński

    (Faculty of Mechanical Engineering, Koszalin University of Technology, Racławicka Street 15-17, 75-620 Koszalin, Poland)

  • Andrzej Krzyszkowski

    (Electrical Engineering and Computer Science, Faculty of Transport, Kazimierz Pulaski University of Technology and Humanities in Radom, Malczewskiego Street 29, 26-600 Radom, Poland)

  • Anna Stelmach

    (Faculty of Transport, Warsaw University of Technology, Koszykowa Street 75, 00-662 Warszawa, Poland)

Abstract

The urban transport system based on trams as the basic means of transport is one of the oldest systems of human transport in urban agglomerations. A tram is a more efficient, cheaper-to-operate, and greener means of transport compared to a bus. Striving to enable the use of this means of transport by elderly and disabled people, constructors and manufacturers of tram vehicles began to consider the requirements of the ordering parties—organizers of municipal public transport—in their solutions. The basic condition for disabled and elderly people to use tram transport is the possibility of safe and efficient entry and exit from the vehicle at tram stops. The fulfillment of this condition is possible only in the case of tram vehicles with a low 100% floor, and this, in turn, requires the replacement of trolleys with traditional wheelsets, that is, trolleys with independently rotating wheels, in the construction of the running gear. A wheelset with independently rotating wheels (IRW) does not have self-centering properties, and, thus, problems may arise with excessive wear of wheel and rail profiles and with continuous contact of the wheel flange with the rail, which may, consequently, lead to derailment. Driving a vehicle on the track in this case is governed by different laws. To prevent such phenomena, it is required to use the wheel drive control system, which allows for the stabilization of the vehicle movement on the track. Both the introduction of independently rotating wheels in the construction of the bogie and the drive connected to the wheel control system requires research and analysis to confirm the correctness of the assumptions made. The innovative solution of the control system in the case of a tram vehicle was patented and then the patent was implemented to produce a low-floor tram with 100% low floor by a Polish tram manufacturer. This article presents the results of the work carried out on the adoption of the concept of a running gear and drive solution for a low-floor tram vehicle with independently rotating wheels and the results of simulation analysis of the drive control of such a system, using mathematical models of the mechanical system (running gear) and the electrical system (motor drive control system).

Suggested Citation

  • Andrzej Chudzikiewicz & Igor Maciejewski & Tomasz Krzyżyński & Andrzej Krzyszkowski & Anna Stelmach, 2022. "Electric Drive Solution for Low-Floor City Transport Trams," Energies, MDPI, vol. 15(13), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4640-:d:847297
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4640/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4640/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dong-Kyun Son & Soon-Ho Kwon & Dong-Ok Kim & Hee-Sue Song & Geun-Ho Lee, 2021. "Control Comparison for the Coordinate Transformation of an Asymmetric Dual Three Phase Synchronous Motor in Healthy and Single-Phase Open Fault States," Energies, MDPI, vol. 14(6), pages 1-14, March.
    2. Fengxiang Wang & Zhenbin Zhang & Xuezhu Mei & José Rodríguez & Ralph Kennel, 2018. "Advanced Control Strategies of Induction Machine: Field Oriented Control, Direct Torque Control and Model Predictive Control," Energies, MDPI, vol. 11(1), pages 1-13, January.
    3. Diego Bellan, 2020. "Clarke Transformation Solution of Asymmetrical Transients in Three-Phase Circuits," Energies, MDPI, vol. 13(19), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adam Szeląg & Mladen Nikšić, 2023. "Advances in Electric Traction System—Special Issue," Energies, MDPI, vol. 16(3), pages 1-5, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sofiane Bacha & Ramzi Saadi & Mohamed Yacine Ayad & Mohamed Sahraoui & Khaled Laadjal & Antonio J. Marques Cardoso, 2023. "Autonomous Electric-Vehicle Control Using Speed Planning Algorithm and Back-Stepping Approach," Energies, MDPI, vol. 16(5), pages 1-26, March.
    2. Kodkin Vladimir & Anikin Alexander, 2021. "On the Physical Nature of Frequency Control Problems of Induction Motor Drives," Energies, MDPI, vol. 14(14), pages 1-15, July.
    3. Ahmed G. Mahmoud A. Aziz & Almoataz Y. Abdelaziz & Ziad M. Ali & Ahmed A. Zaki Diab, 2023. "A Comprehensive Examination of Vector-Controlled Induction Motor Drive Techniques," Energies, MDPI, vol. 16(6), pages 1-32, March.
    4. Karol Wróbel & Piotr Serkies & Krzysztof Szabat, 2020. "Model Predictive Base Direct Speed Control of Induction Motor Drive—Continuous and Finite Set Approaches," Energies, MDPI, vol. 13(5), pages 1-15, March.
    5. Zhanqing Zhou & Xin Gu & Zhiqiang Wang & Guozheng Zhang & Qiang Geng, 2019. "An Improved Torque Control Strategy of PMSM Drive Considering On-Line MTPA Operation," Energies, MDPI, vol. 12(15), pages 1-17, July.
    6. Tadeusz Białoń & Roman Niestrój & Jarosław Michalak & Marian Pasko, 2021. "Induction Motor PI Observer with Reduced-Order Integrating Unit," Energies, MDPI, vol. 14(16), pages 1-12, August.
    7. Cheng-Kai Lin & Jen-te Yu & Hao-Qun Huang & Jyun-Ting Wang & Hsing-Cheng Yu & Yen-Shin Lai, 2018. "A Dual-Voltage-Vector Model-Free Predictive Current Controller for Synchronous Reluctance Motor Drive Systems," Energies, MDPI, vol. 11(7), pages 1-29, July.
    8. Yuzhe Zhang & Xiaodong Liu & Haitao Li & Zhenbin Zhang, 2023. "A Model Independent Predictive Control of PMSG Wind Turbine Systems with a New Mechanism to Update Variables," Energies, MDPI, vol. 16(9), pages 1-15, April.
    9. Chaymae Fahassa & Yassine Zahraoui & Mohammed Akherraz & Mohammed Kharrich & Ehab E. Elattar & Salah Kamel, 2022. "Induction Motor DTC Performance Improvement by Inserting Fuzzy Logic Controllers and Twelve-Sector Neural Network Switching Table," Mathematics, MDPI, vol. 10(9), pages 1-14, April.
    10. Xiangwu Yan & Wenfei Chang & Sen Cui & Aazim Rasool & Jiaoxin Jia & Ying Sun, 2021. "Recurrence of Sub-Synchronous Oscillation Accident of Hornsea Wind Farm in UK and Its Suppression Strategy," Energies, MDPI, vol. 14(22), pages 1-13, November.
    11. Tadeusz Białoń & Marian Pasko & Roman Niestrój, 2020. "Developing Induction Motor State Observers with Increased Robustness," Energies, MDPI, vol. 13(20), pages 1-24, October.
    12. Camila Paes Salomon & Wilson Cesar Sant’Ana & Germano Lambert-Torres & Luiz Eduardo Borges da Silva & Erik Leandro Bonaldi & Levy Ely de Lacerda De Oliveira, 2018. "Comparison among Methods for Induction Motor Low-Intrusive Efficiency Evaluation Including a New AGT Approach with a Modified Stator Resistance," Energies, MDPI, vol. 11(4), pages 1-21, March.
    13. Habib Benbouhenni & Nicu Bizon, 2021. "Improved Rotor Flux and Torque Control Based on the Third-Order Sliding Mode Scheme Applied to the Asynchronous Generator for the Single-Rotor Wind Turbine," Mathematics, MDPI, vol. 9(18), pages 1-16, September.
    14. Yanis Hamoudi & Hocine Amimeur & Djamal Aouzellag & Maher G. M. Abdolrasol & Taha Selim Ustun, 2023. "Hyperparameter Bayesian Optimization of Gaussian Process Regression Applied in Speed-Sensorless Predictive Torque Control of an Autonomous Wind Energy Conversion System," Energies, MDPI, vol. 16(12), pages 1-19, June.
    15. Mostafa Ahmed & Ibrahim Harbi & Ralph Kennel & José Rodríguez & Mohamed Abdelrahem, 2022. "Evaluation of the Main Control Strategies for Grid-Connected PV Systems," Sustainability, MDPI, vol. 14(18), pages 1-20, September.
    16. Mohamed Derbeli & Cristian Napole & Oscar Barambones & Jesus Sanchez & Isidro Calvo & Pablo Fernández-Bustamante, 2021. "Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications," Energies, MDPI, vol. 14(22), pages 1-31, November.
    17. Thyago Estrabis & Gabriel Gentil & Raymundo Cordero, 2021. "Development of a Resolver-to-Digital Converter Based on Second-Order Difference Generalized Predictive Control," Energies, MDPI, vol. 14(2), pages 1-22, January.
    18. Ondrej Lipcak & Filip Baum & Jan Bauer, 2021. "Influence of Selected Non-Ideal Aspects on Active and Reactive Power MRAS for Stator and Rotor Resistance Estimation," Energies, MDPI, vol. 14(20), pages 1-19, October.
    19. María Teresa Villén & Maria Paz Comech & Eduardo Martinez Carrasco & Aníbal Antonio Prada Hurtado, 2022. "Influence of Negative Sequence Injection Strategies on Faulted Phase Selector Performance," Energies, MDPI, vol. 15(16), pages 1-19, August.
    20. Pavel Karlovsky & Jiri Lettl, 2018. "Induction Motor Drive Direct Torque Control and Predictive Torque Control Comparison Based on Switching Pattern Analysis," Energies, MDPI, vol. 11(7), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4640-:d:847297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.