IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i15p4626-d605236.html
   My bibliography  Save this article

Frequency Scan–Based Mitigation Approach of Subsynchronous Control Interaction in Type-3 Wind Turbines

Author

Listed:
  • Faris Alatar

    (Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA)

  • Ali Mehrizi-Sani

    (Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA)

Abstract

Integration of wind energy resources into the grid creates several challenges for power system dynamics. More specifically, Type-3 wind turbines are susceptible to subsynchronous control interactions (SSCIs) when they become radially connected to a series-compensated transmission line. SSCIs can cause disruptions in power generation and can result in significant damage to wind farm (WF) components and equipment. This paper proposes an approach to mitigate SSCIs using an online frequency scan, with optimized phase angles of voltage harmonic injection to maintain steady-state operation, to modify the controllers or the operating conditions of the wind turbine. The proposed strategy is simulated in PSCAD/EMTDC software on the IEEE second benchmark model for subsynchronous resonance. Simulation results demonstrate the effectiveness of this strategy by ensuring oscillations do not grow.

Suggested Citation

  • Faris Alatar & Ali Mehrizi-Sani, 2021. "Frequency Scan–Based Mitigation Approach of Subsynchronous Control Interaction in Type-3 Wind Turbines," Energies, MDPI, vol. 14(15), pages 1-13, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4626-:d:605236
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/15/4626/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/15/4626/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shair, Jan & Xie, Xiaorong & Yan, Gangui, 2019. "Mitigating subsynchronous control interaction in wind power systems: Existing techniques and open challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 330-346.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaser Bostani & Saeid Jalilzadeh & Saleh Mobayen & Thaned Rojsiraphisal & Andrzej Bartoszewicz, 2022. "Damping of Subsynchronous Resonance in Utility DFIG-Based Wind Farms Using Wide-Area Fuzzy Control Approach," Energies, MDPI, vol. 15(5), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uvini Perera & Amanullah Maung Than Oo & Ramon Zamora, 2022. "Sub Synchronous Oscillations under High Penetration of Renewables—A Review of Existing Monitoring and Damping Methods, Challenges, and Research Prospects," Energies, MDPI, vol. 15(22), pages 1-23, November.
    2. Shair, Jan & Li, Haozhi & Hu, Jiabing & Xie, Xiaorong, 2021. "Power system stability issues, classifications and research prospects in the context of high-penetration of renewables and power electronics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Jafarzadeh Ghoushchi, Saeid & Manjili, Sobhan & Mardani, Abbas & Saraji, Mahyar Kamali, 2021. "An extended new approach for forecasting short-term wind power using modified fuzzy wavelet neural network: A case study in wind power plant," Energy, Elsevier, vol. 223(C).
    4. Han, Jiangbei & Liu, Chengxi, 2023. "Performance evaluation of SSCI damping controller based on the elastic energy equivalent system," Applied Energy, Elsevier, vol. 331(C).
    5. Shair, Jan & Xie, Xiaorong & Liu, Wei & Li, Xuan & Li, Haozhi, 2021. "Modeling and stability analysis methods for investigating subsynchronous control interaction in large-scale wind power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Ronglin Ma & Yaozhen Han & Weigang Pan, 2021. "Variable-Gain Super-Twisting Sliding Mode Damping Control of Series-Compensated DFIG-Based Wind Power System for SSCI Mitigation," Energies, MDPI, vol. 14(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4626-:d:605236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.