IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i5p1698-d758051.html
   My bibliography  Save this article

Premises for the Future Deployment of Automated and Connected Transport in Romania Considering Citizens’ Perceptions and Attitudes towards Automated Vehicles

Author

Listed:
  • Liliana Andrei

    (Faculty of Civil, Industrial and Agricultural Engineering, Technical University of Civil Engineering, 020396 Bucharest, Romania)

  • Mihaela Hermina Negulescu

    (Faculty of Urban Planning, Ion Mincu University of Architecture and Urbanism, 010014 Bucharest, Romania)

  • Oana Luca

    (Faculty of Civil, Industrial and Agricultural Engineering, Technical University of Civil Engineering, 020396 Bucharest, Romania)

Abstract

This paper is an initial exploratory study that provides recommendations for the sustainable development of future automated and connected transport (ACT) systems in Romania. To achieve this, our paper investigates the different factors that influence mobility behaviour related to ACT systems through two different themes. The first part analyses (i) the strategic framework that is relevant to future ACT deployment and (ii) the spatial development patterns of large cities in Romania that might influence future mobility behaviour based on ACT systems. We presumed, and the study confirmed, that there is currently a poor focus on ACT systems in strategic documents and that the current spatial patterns show some premises for unsustainable mobility behaviour based on ACT systems. The second part describes the results of our analysis on the WISE-ACT survey deployed in Romania. We explored how informed Romanian citizens are about AVs; whether they are ready to use them; and what perceptions, concerns, and attitudes might influence their mobility behaviour when using ACT systems. The present analysis mainly shows that the perceptions of Romanian citizens are widely similar to those of citizens from other countries and that, for Romania, the orientation towards unsustainable forms of individual travel is maintained in terms of the future use of AVs. The recommendations that are presented here primarily address the spatial and attitudinal factors that have been identified as prerequisites for unsustainable future mobility behaviour linked to ACT systems.

Suggested Citation

  • Liliana Andrei & Mihaela Hermina Negulescu & Oana Luca, 2022. "Premises for the Future Deployment of Automated and Connected Transport in Romania Considering Citizens’ Perceptions and Attitudes towards Automated Vehicles," Energies, MDPI, vol. 15(5), pages 1-23, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1698-:d:758051
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/5/1698/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/5/1698/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Agnieszka Dudziak & Monika Stoma & Andrzej Kuranc & Jacek Caban, 2021. "Assessment of Social Acceptance for Autonomous Vehicles in Southeastern Poland," Energies, MDPI, vol. 14(18), pages 1-16, September.
    2. Shelly Etzioni & Jamil Hamadneh & Arnór B. Elvarsson & Domokos Esztergár-Kiss & Milena Djukanovic & Stelios N. Neophytou & Jaka Sodnik & Amalia Polydoropoulou & Ioannis Tsouros & Cristina Pronello & N, 2020. "Modeling Cross-National Differences in Automated Vehicle Acceptance," Sustainability, MDPI, vol. 12(22), pages 1-22, November.
    3. Miltos Kyriakidis & Jaka Sodnik & Kristina Stojmenova & Arnór B. Elvarsson & Cristina Pronello & Nikolas Thomopoulos, 2020. "The Role of Human Operators in Safety Perception of AV Deployment—Insights from a Large European Survey," Sustainability, MDPI, vol. 12(21), pages 1-24, November.
    4. Francesco Russo & Corrado Rindone, 2021. "Regional Transport Plans: From Direction Role Denied to Common Rules Identified," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
    5. H Taubenböck & C Gerten & K Rusche & S Siedentop & M Wurm, 2019. "Patterns of Eastern European urbanisation in the mirror of Western trends – Convergent, unique or hybrid?," Environment and Planning B, , vol. 46(7), pages 1206-1225, September.
    6. Monika Stoma & Agnieszka Dudziak & Jacek Caban & Paweł Droździel, 2021. "The Future of Autonomous Vehicles in the Opinion of Automotive Market Users," Energies, MDPI, vol. 14(16), pages 1-19, August.
    7. Jamil Hamadneh & Domokos Esztergár-Kiss, 2021. "The Influence of Introducing Autonomous Vehicles on Conventional Transport Modes and Travel Time," Energies, MDPI, vol. 14(14), pages 1-28, July.
    8. Alexandros Nikitas & Kalliopi Michalakopoulou & Eric Tchouamou Njoya & Dimitris Karampatzakis, 2020. "Artificial Intelligence, Transport and the Smart City: Definitions and Dimensions of a New Mobility Era," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
    9. Amalia Polydoropoulou & Ioannis Tsouros & Nikolas Thomopoulos & Cristina Pronello & Arnór Elvarsson & Haraldur Sigþórsson & Nima Dadashzadeh & Kristina Stojmenova & Jaka Sodnik & Stelios Neophytou & D, 2021. "Who Is Willing to Share Their AV? Insights about Gender Differences among Seven Countries," Sustainability, MDPI, vol. 13(9), pages 1-19, April.
    10. Stefan Bouzarovski, 2016. "Kiril Stanilov and Luděk Sýkora (eds.) 2014 : Confronting Suburbanization: Urban Decentralization in Postsocialist Central and Eastern Europe . Chichester : Wiley Blackwell," International Journal of Urban and Regional Research, Wiley Blackwell, vol. 40(1), pages 249-251, January.
    11. Emberger, Guenter & Pfaffenbichler, Paul, 2020. "A quantitative analysis of potential impacts of automated vehicles in Austria using a dynamic integrated land use and transport interaction model," Transport Policy, Elsevier, vol. 98(C), pages 57-67.
    12. Berrada, Jaâfar & Mouhoubi, Ilyes & Christoforou, Zoi, 2020. "Factors of successful implementation and diffusion of services based on autonomous vehicles: users’ acceptance and operators’ profitability," Research in Transportation Economics, Elsevier, vol. 83(C).
    13. Oana LUCA & Mihai SERCAIANU, 2011. "Mobility Management In European Projects. Lessons Learned For Romania," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 6(2), pages 54-66, May.
    14. Banister, David, 2008. "The sustainable mobility paradigm," Transport Policy, Elsevier, vol. 15(2), pages 73-80, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liliana ANDREI & Oana LUCA, 2022. "Towards A Sustainable Mobility Development In Romanian Cities. A Comparative Analysis Of The Sustainable Urban Mobility Plans At The National Level," Management Research and Practice, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 14(1), pages 30-40, March.
    2. Kornélia Lazányi, 2023. "Perceived Risks of Autonomous Vehicles," Risks, MDPI, vol. 11(2), pages 1-16, January.
    3. Liliana Andrei & Oana Luca & Florian Gaman, 2022. "Insights from User Preferences on Automated Vehicles: Influence of Socio-Demographic Factors on Value of Time in Romania Case," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
    4. Oana Luca & Liliana Andrei & Cristina Iacoboaea & Florian Gaman, 2023. "Unveiling the Hidden Effects of Automated Vehicles on “Do No Significant Harm” Components," Sustainability, MDPI, vol. 15(14), pages 1-26, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liliana Andrei & Oana Luca & Florian Gaman, 2022. "Insights from User Preferences on Automated Vehicles: Influence of Socio-Demographic Factors on Value of Time in Romania Case," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
    2. Dorsa Alipour & Hussein Dia, 2023. "A Systematic Review of the Role of Land Use, Transport, and Energy-Environment Integration in Shaping Sustainable Cities," Sustainability, MDPI, vol. 15(8), pages 1-29, April.
    3. Marek Guzek & Rafał S. Jurecki & Wojciech Wach, 2022. "Vehicle and Traffic Safety," Energies, MDPI, vol. 15(13), pages 1-4, June.
    4. Kalina Grzesiuk & Dorota Jegorow & Monika Wawer & Anna Głowacz, 2023. "Energy-Efficient City Transportation Solutions in the Context of Energy-Conserving and Mobility Behaviours of Generation Z," Energies, MDPI, vol. 16(15), pages 1-28, August.
    5. Amalia Polydoropoulou & Ioannis Tsouros & Nikolas Thomopoulos & Cristina Pronello & Arnór Elvarsson & Haraldur Sigþórsson & Nima Dadashzadeh & Kristina Stojmenova & Jaka Sodnik & Stelios Neophytou & D, 2021. "Who Is Willing to Share Their AV? Insights about Gender Differences among Seven Countries," Sustainability, MDPI, vol. 13(9), pages 1-19, April.
    6. Dadashzadeh, Nima & Woods, Lee & Ouelhadj, Djamila & Thomopoulos, Nikolas & Kamargianni, Maria & Antoniou, Constantinos, 2022. "Mobility as a Service Inclusion Index (MaaSINI): Evaluation of inclusivity in MaaS systems and policy recommendations," Transport Policy, Elsevier, vol. 127(C), pages 191-202.
    7. Jason Soria & Shelly Etzioni & Yoram Shiftan & Amanda Stathopoulos & Eran Ben-Elia, 2022. "Microtransit adoption in the wake of the COVID-19 pandemic: evidence from a choice experiment with transit and car commuters," Papers 2204.01974, arXiv.org.
    8. Mohamad Shatanawi & Ferenc Mészáros, 2022. "Implications of the Emergence of Autonomous Vehicles and Shared Autonomous Vehicles: A Budapest Perspective," Sustainability, MDPI, vol. 14(17), pages 1-19, September.
    9. Saujot, Mathieu & Lefèvre, Benoit, 2016. "The next generation of urban MACCs. Reassessing the cost-effectiveness of urban mitigation options by integrating a systemic approach and social costs," Energy Policy, Elsevier, vol. 92(C), pages 124-138.
    10. Thomas Vanoutrive & Ann Verhetsel, 2013. "Classifying transport studies using three dimensions of society: market structure, sustainability and decision making," Chapters, in: Thomas Vanoutrive & Ann Verhetsel (ed.), Smart Transport Networks, chapter 1, pages 1-8, Edward Elgar Publishing.
    11. Tornberg, Patrik & Odhage, John, 2018. "Making transport planning more collaborative? The case of Strategic Choice of Measures in Swedish transport planning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 416-429.
    12. Idiano D'Adamo & Massimo Gastaldi & Ilhan Ozturk, 2023. "The sustainable development of mobility in the green transition: Renewable energy, local industrial chain, and battery recycling," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 840-852, April.
    13. Cavoli, Clemence, 2021. "Accelerating sustainable mobility and land-use transitions in rapidly growing cities: Identifying common patterns and enabling factors," Journal of Transport Geography, Elsevier, vol. 94(C).
    14. Banister, David, 2011. "The trilogy of distance, speed and time," Journal of Transport Geography, Elsevier, vol. 19(4), pages 950-959.
    15. Hopkins, Debbie & Stephenson, Janet, 2014. "Generation Y mobilities through the lens of energy cultures: a preliminary exploration of mobility cultures," Journal of Transport Geography, Elsevier, vol. 38(C), pages 88-91.
    16. Jin Xue & Hans Jakob Walnum & Carlo Aall & Petter Næss, 2016. "Two Contrasting Scenarios for a Zero-Emission Future in a High-Consumption Society," Sustainability, MDPI, vol. 9(1), pages 1-25, December.
    17. Lin, Joanne Yuh-Jye & Jenelius, Erik & Cebecauer, Matej & Rubensson, Isak & Chen, Cynthia, 2023. "The equity of public transport crowding exposure," Journal of Transport Geography, Elsevier, vol. 110(C).
    18. Ali Soltani & Mahsa Zamiri, 2011. "Investigation of School Students' Travel Patterns, Two Case Areas of Mashhad, Iran," Modern Applied Science, Canadian Center of Science and Education, vol. 5(5), pages 184-184, October.
    19. Martínez-Lao, Juan & Montoya, Francisco G. & Montoya, Maria G. & Manzano-Agugliaro, Francisco, 2017. "Electric vehicles in Spain: An overview of charging systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 970-983.
    20. Vytautas Dumbliauskas & Vytautas Grigonis, 2020. "An Empirical Activity Sequence Approach for Travel Behavior Analysis in Vilnius City," Sustainability, MDPI, vol. 12(2), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1698-:d:758051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.